Fire behavior and litter layer consumption in pine-fir and pine-oak forests

Authors

  • Rubén Ortiz Mendoza Universidad Autónoma de Nuevo León
  • Marco Aurelio González Tagle Universidad Autónoma de Nuevo León Facultad de Ciencias Forestales
  • Diego R. Pérez-Salicrup Universidad Nacional Autónoma de México
  • Oscar A. Aguirre Calderón Universidad Autónoma de Nuevo León
  • Wibke Himmelsbach Universidad Autónoma de Nuevo León
  • Luis G. Cuéllar-Rodríguez Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29298/rmcf.v15i86.1485

Keywords:

Cama de combustible, comunidad arbórea, incendio forestal, propagación del fuego, quema de acículas, Reserva de la Biosfera Mariposa Monarca

Abstract

Fuel load, topography, and fuel moisture influence fire behavior. Knowing these relationships allows us to identify the fire behavior according to the tree community, and whether or not their heterogeneity corresponds to different forest fuel beds. This will help define the need to establish different fuel management actions depending on the tree community. This work aimed to evaluate the fire spread, flame geometry, and consumption of the pine-fir and pine-oak litter layers in order to determine whether they correspond to the same fuel bed. Controlled burning of the litter layer was carried out on slopes of 0°, 10°, and 20°. Different fire behaviors were observed among tree communities (p<0.05) but without variation in fuel consumption. The propagation rate, flame length, flame height, and fire Index increased according to the slope, while the flame separation angle decreased. Litter load was positively correlated with flame height, flame length, and fire Index in pine-fir forest. Fitted models indicated that fire intensity increased exponentially with flame length and logistically with the fire spread. Heterogeneous fire behavior among tree communities suggests that they correspond to different fuel beds, with a significant influence of slope on fire behavior.

.

Downloads

References

Arsham, H., and M. Lovric. 2011. Bartlett’s Test. International Encyclopedia of Statistical Science. Springer, Berlin, Germany. 87.88. Doi: 10.1007/978-3-642-04898-2_132. DOI: https://doi.org/10.1007/978-3-642-04898-2_132

Brewer, N. W., A. M. S. Smith, J. A. Hatten, P. E. Higuera, … and W. T. Tinkham. 2013. Fuel moisture influences on fire-altered carbon in masticated fuels: An experimental study. Journal of Geophysical Research: Biogeosciences 118:30-40. Doi: 10.1029/2012JG002079. DOI: https://doi.org/10.1029/2012JG002079

Byram, G. M. 1959. Combustion of forest fuels. In Forest fire: control and use, McGraw-Hill. New York, USA. 61–89.

Cochrane, M. A. 2009. Tropical Fire Ecology: Climate change, land use, and ecosystem dinamics. Springer-Praxis Books. Chichester, UK. 645 p. DOI: https://doi.org/10.1007/978-3-540-77381-8

Cornelissen, J. H. C., S. Grootemaat, L. M. Verheijen, W. K. Cornwell, … and R. Aerts. 2017. Are litter decomposition and fire linked through plant species traits? New Phytologist 216:653-669. Doi: 10.1111/NPH.14766. DOI: https://doi.org/10.1111/nph.14766

Cruz, M. G., M. E. Alexander, A. L. Sullivan, J. S. Gould, and M. Kilinc. 2018. Assessing improvements in models used to operationally predict wildland fire rate of spread. Environmental Modelling & Software 105:54-63. Doi: 10.1016/J.ENVSOFT.2018.03.027. DOI: https://doi.org/10.1016/j.envsoft.2018.03.027

Cruz, M. G., W. L. McCaw, W. R. Anderson, and J. S. Gould. 2013. Fire behaviour modelling in semi-arid mallee-heath shrublands of southern Australia. Environmental Modelling and Software 40:21-34. Doi: 10.1016/j.envsoft.2012.07.003. DOI: https://doi.org/10.1016/j.envsoft.2012.07.003

Drezner, Z., O. Turel, and D. Zerom. 2010. A Modified Kolmogorov–Smirnov Test for Normality. Communications in Statistics-Simulation and Computation® 39:693-704. Doi: 10.1080/03610911003615816. DOI: https://doi.org/10.1080/03610911003615816

Ellair, D. P., and W. J. Platt. 2013. Fuel composition influences fire characteristics and understorey hardwoods in pine savanna. Journal of Ecology 101:192-201. Doi: 10.1111/1365-2745.12008. DOI: https://doi.org/10.1111/1365-2745.12008

Fernandes, P. M, and C. Loureiro. 2013. Fine fuels consumption and CO2 emissions from surface fire experiments in maritime pine stands in northern Portugal. Forest Ecology and Management 291:344-356. Doi: 10.1016/j.foreco.2012.11.037. DOI: https://doi.org/10.1016/j.foreco.2012.11.037

Francos, M., X. Úbeda, P. Pereira, and M. Alcañiz. 2018. Long-term impact of wildfire on soils exposed to different fire severities. A case study in Cadiretes Massif (NE Iberian Peninsula). Science of the Total Environment 615:664-671. Doi: 10.1016/j.scitotenv.2017.09.311. DOI: https://doi.org/10.1016/j.scitotenv.2017.09.311

Grootemaat, S., I. J. Wright, P. M. van Bodegom, and J. H. C. Cornelissen. 2017. Scaling up flammability from individual leaves to fuel beds. Oikos 126:1428-1438. Doi: 10.1111/OIK.03886. DOI: https://doi.org/10.1111/oik.03886

Kauf, Z., W. Damsohn, and A. Fangmeier. 2018. Do relationships between leaf traits and fire behaviour of leaf litter beds persist in time? PLoS ONE 13(12):e0209780. Doi: 10.1371/journal.pone.0209780. DOI: https://doi.org/10.1371/journal.pone.0209780

Kreye, J. K., N. W. Brewer, P. Morgan, J. M. Varner, … and R. D. Ottmar. 2014. Fire behavior in masticated fuels: A review. Forest Ecology and Management 314:193-207. Doi: 10.1016/j.foreco.2013.11.035. DOI: https://doi.org/10.1016/j.foreco.2013.11.035

Kreye, J. K., J. M. Kane, J. M. Varner, and J. K. Hiers. 2020. Radiant heating rapidly increases litter flammability through impacts on fuel moisture. Fire Ecology 16:1-10. Doi: 10.1186/s42408-020-0067-3. DOI: https://doi.org/10.1186/s42408-020-0067-3

Kreye, J. K., J. M. Varner, and E. E. Knapp. 2011. Effects of particle fracturing and moisture content on fire behaviour in masticated fuelbeds burned in a laboratory. International Journal of Wildland Fire 20:308-317. Doi: 10.1071/WF09126. DOI: https://doi.org/10.1071/WF09126

Matsypura, D., O. A. Prokopyev, and A. Zahar. 2018. Wildfire fuel management: Network-based models and optimization of prescribed burning. European Journal of Operational Research 264:774-796. Doi: 10.1016/j.ejor.2017.06.050. DOI: https://doi.org/10.1016/j.ejor.2017.06.050

Meddens, A. J. H., C. A. Kolden, J. A. Lutz, A. M. S. Smith, … and M. A. Krawchuk. 2018. Fire Refugia: What Are They, and Why Do They Matter for Global Change? BioScience 68:944-954. Doi: 10.1093/BIOSCI/BIY103. DOI: https://doi.org/10.1093/biosci/biy103

Miloua, H. 2019. Fire behavior characteristics in a pine needle fuel bed in northwest Africa. Journal of Forestry Research 30:959-967. Doi: 10.1007/s11676-018-0676-8. DOI: https://doi.org/10.1007/s11676-018-0676-8

Morandini, F., Y. Perez-Ramirez, V. Tihay, P. A. Santoni, and T. Barboni. 2013. Radiant, convective and heat release characterization of vegetation fire. International Journal of Thermal Sciences 70:83-91. Doi: 10.1016/J.IJTHERMALSCI.2013.03.011. DOI: https://doi.org/10.1016/j.ijthermalsci.2013.03.011

Morandini, F., P. A. Santoni, J. B. Tramoni, and W. E. Mell. 2019. Experimental investigation of flammability and numerical study of combustion of shrub of rockrose under severe drought conditions. Fire Safety Journal 108:102836. Doi: 10.1016/J.FIRESAF.2019.102836. DOI: https://doi.org/10.1016/j.firesaf.2019.102836

Morandini, F., X. Silvani, J. L. Dupuy, and A. Susset. 2018. Fire spread across a sloping fuel bed: Flame dynamics and heat transfers. Combustion and Flame 190:158-170. Doi: 10.1016/j.combustflame.2017.11.025. DOI: https://doi.org/10.1016/j.combustflame.2017.11.025

Morgan V., J., J. M. Kane, J. K. Kreye, and E. Engber. 2015. The flammability of forest and woodland litter: A synthesis. Current Forestry Reports 1:91–99. Doi: 10.1007/S40725-015-0012-X/FIGURES/1. DOI: https://doi.org/10.1007/s40725-015-0012-x

Ottmar, R. D., A. T. Hudak, S. J. Prichard, C. S. Wright, … and R. E. Vihnanek. 2016. Pre-fire and post-fire surface fuel and cover measurements collected in the south-eastern United States for model evaluation and development - RxCADRE 2008, 2011 and 2012. International Journal of Wildland Fire 25:10-24. Doi: 10.1071/WF15092. DOI: https://doi.org/10.1071/WF15092

Perez-Ramirez, Y., W. E. Mell, P. A. Santoni, J. B. Tramoni, and F. Bosseur. 2017. Examination of WFDS in Modeling Spreading Fires in a Furniture Calorimeter. Fire Technology 53:1795-1832. Doi: 10.1007/S10694-017-0657-Z/FIGURES/27. DOI: https://doi.org/10.1007/s10694-017-0657-z

Rossa, C. G., and P. M. Fernandes. 2018. Empirical Modeling of Fire Spread Rate in No-Wind and No-Slope Conditions. Forest Science 64:358-370. Doi: 10.1093/FORSCI/FXY002. DOI: https://doi.org/10.1093/forsci/fxy002

Rstudio Team. 2020. RStudio: Integrated Development Environmental for R (Version 4.0.3.). R Foundation for Statistical Computing. PBC, Boston, USA. (Enero 12, 2021).

Russell-Smith, J., B. P. Murphy, C. P. (Mick) Meyer, G. D. Cook, … and B. Peter. 2009. Improving estimates of savanna burning emissions for greenhouse accounting in northern Australia: limitations, challenges, applications. International Journal of Wildland Fire 18:1-18. Doi: 10.1071/WF08009. DOI: https://doi.org/10.1071/WF08009

Sánchez-Monroy, X., W. Mell, J. Torres-Arenas, and B. W. Butler. 2019. Fire spread upslope: Numerical simulation of laboratory experiments. Fire Safety Journal 108:102844. Doi: 10.1016/J.FIRESAF.2019.102844. DOI: https://doi.org/10.1016/j.firesaf.2019.102844

Sikkink, P. G., T. B. Jain, J. Reardon, F. A. Heinsch, … and L. S. Baggett. 2017. Effect of particle aging on chemical characteristics, smoldering, and fire behavior in mixed-conifer masticated fuel. Forest Ecology and Management 405:150-165. Doi: 10.1016/j.foreco.2017.09.008. DOI: https://doi.org/10.1016/j.foreco.2017.09.008

Silvani, X., F. Morandini, J. L. Dupuy, A. Susset, … and O. Lambert. 2018. Measuring velocity field and heat transfer during natural fire spread over large inclinable bench. Experimental Thermal and Fluid Science 92:184-201. Doi: 10.1016/J.EXPTHERMFLUSCI.2017.11.020. DOI: https://doi.org/10.1016/j.expthermflusci.2017.11.020

Tihay, V., F. Morandini, P. A. Santoni, Y. Perez-Ramirez, and T. Barboni. 2014. Combustion of forest litters under slope conditions: Burning rate, heat release rate, convective and radiant fractions for different loads. Combustion and Flame 161:3237-3248. Doi: 10.1016/J.COMBUSTFLAME.2014.06.003. DOI: https://doi.org/10.1016/j.combustflame.2014.06.003

Varner, J. M., S. M. Hood, D. P. Aubrey, K. Yedinak, … and E. M. Rowell. 2021. Tree crown injury from wildland fires: causes, measurement and ecological and physiological consequences. New Phytologist 231:1676-1685. Doi: 10.1111/NPH.17539. DOI: https://doi.org/10.1111/nph.17539

Yang, Z., and H. X. Chen. 2018. Experimental Study on Flame Geometry along the Inclined Surface with and without Sidewalls by Using a Gas Burner. In Procedia Engineering, 211:925-933. Doi: 1016/J.PROENG.2017.12.094. DOI: https://doi.org/10.1016/j.proeng.2017.12.094

Yokelson, R. J., I. R. Burling, J. B. Gilman, C. Warneke, … and D. R. Weise. 2013. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires. Atmospheric Chemistry and Physics 13:89-116. Doi: 10.5194/acp-13-89-2013. DOI: https://doi.org/10.5194/acp-13-89-2013

Zar, J. H. 2010. Biostatiscal Analysis. 5th Edition. Prentice-Hall/Pearson, Upper Saddle River New Jersey, USA. 944 p.

Published

2024-11-12

How to Cite

Ortiz Mendoza, Rubén, Marco Aurelio González Tagle, Diego R. Pérez-Salicrup, Oscar A. Aguirre Calderón, Wibke Himmelsbach, and Luis G. Cuéllar-Rodríguez. 2024. “Fire Behavior and Litter Layer Consumption in Pine-Fir and Pine-Oak Forests”. Revista Mexicana De Ciencias Forestales 15 (86). México, ME:77-100. https://doi.org/10.29298/rmcf.v15i86.1485.

Issue

Section

Scientific article