Fire behavior and litter layer consumption in pine-fir and pine-oak forests
DOI:
https://doi.org/10.29298/rmcf.v15i86.1485Keywords:
Cama de combustible, comunidad arbórea, incendio forestal, propagación del fuego, quema de acículas, Reserva de la Biosfera Mariposa MonarcaAbstract
Fuel load, topography, and fuel moisture influence fire behavior. Knowing these relationships allows us to identify the fire behavior according to the tree community, and whether or not their heterogeneity corresponds to different forest fuel beds. This will help define the need to establish different fuel management actions depending on the tree community. This work aimed to evaluate the fire spread, flame geometry, and consumption of the pine-fir and pine-oak litter layers in order to determine whether they correspond to the same fuel bed. Controlled burning of the litter layer was carried out on slopes of 0°, 10°, and 20°. Different fire behaviors were observed among tree communities (p<0.05) but without variation in fuel consumption. The propagation rate, flame length, flame height, and fire Index increased according to the slope, while the flame separation angle decreased. Litter load was positively correlated with flame height, flame length, and fire Index in pine-fir forest. Fitted models indicated that fire intensity increased exponentially with flame length and logistically with the fire spread. Heterogeneous fire behavior among tree communities suggests that they correspond to different fuel beds, with a significant influence of slope on fire behavior.
.
Downloads
References
Arsham, H., and M. Lovric. 2011. Bartlett’s Test. International Encyclopedia of Statistical Science. Springer, Berlin, Germany. 87.88. Doi: 10.1007/978-3-642-04898-2_132. DOI: https://doi.org/10.1007/978-3-642-04898-2_132
Brewer, N. W., A. M. S. Smith, J. A. Hatten, P. E. Higuera, … and W. T. Tinkham. 2013. Fuel moisture influences on fire-altered carbon in masticated fuels: An experimental study. Journal of Geophysical Research: Biogeosciences 118:30-40. Doi: 10.1029/2012JG002079. DOI: https://doi.org/10.1029/2012JG002079
Byram, G. M. 1959. Combustion of forest fuels. In Forest fire: control and use, McGraw-Hill. New York, USA. 61–89.
Cochrane, M. A. 2009. Tropical Fire Ecology: Climate change, land use, and ecosystem dinamics. Springer-Praxis Books. Chichester, UK. 645 p. DOI: https://doi.org/10.1007/978-3-540-77381-8
Cornelissen, J. H. C., S. Grootemaat, L. M. Verheijen, W. K. Cornwell, … and R. Aerts. 2017. Are litter decomposition and fire linked through plant species traits? New Phytologist 216:653-669. Doi: 10.1111/NPH.14766. DOI: https://doi.org/10.1111/nph.14766
Cruz, M. G., M. E. Alexander, A. L. Sullivan, J. S. Gould, and M. Kilinc. 2018. Assessing improvements in models used to operationally predict wildland fire rate of spread. Environmental Modelling & Software 105:54-63. Doi: 10.1016/J.ENVSOFT.2018.03.027. DOI: https://doi.org/10.1016/j.envsoft.2018.03.027
Cruz, M. G., W. L. McCaw, W. R. Anderson, and J. S. Gould. 2013. Fire behaviour modelling in semi-arid mallee-heath shrublands of southern Australia. Environmental Modelling and Software 40:21-34. Doi: 10.1016/j.envsoft.2012.07.003. DOI: https://doi.org/10.1016/j.envsoft.2012.07.003
Drezner, Z., O. Turel, and D. Zerom. 2010. A Modified Kolmogorov–Smirnov Test for Normality. Communications in Statistics-Simulation and Computation® 39:693-704. Doi: 10.1080/03610911003615816. DOI: https://doi.org/10.1080/03610911003615816
Ellair, D. P., and W. J. Platt. 2013. Fuel composition influences fire characteristics and understorey hardwoods in pine savanna. Journal of Ecology 101:192-201. Doi: 10.1111/1365-2745.12008. DOI: https://doi.org/10.1111/1365-2745.12008
Fernandes, P. M, and C. Loureiro. 2013. Fine fuels consumption and CO2 emissions from surface fire experiments in maritime pine stands in northern Portugal. Forest Ecology and Management 291:344-356. Doi: 10.1016/j.foreco.2012.11.037. DOI: https://doi.org/10.1016/j.foreco.2012.11.037
Francos, M., X. Úbeda, P. Pereira, and M. Alcañiz. 2018. Long-term impact of wildfire on soils exposed to different fire severities. A case study in Cadiretes Massif (NE Iberian Peninsula). Science of the Total Environment 615:664-671. Doi: 10.1016/j.scitotenv.2017.09.311. DOI: https://doi.org/10.1016/j.scitotenv.2017.09.311
Grootemaat, S., I. J. Wright, P. M. van Bodegom, and J. H. C. Cornelissen. 2017. Scaling up flammability from individual leaves to fuel beds. Oikos 126:1428-1438. Doi: 10.1111/OIK.03886. DOI: https://doi.org/10.1111/oik.03886
Kauf, Z., W. Damsohn, and A. Fangmeier. 2018. Do relationships between leaf traits and fire behaviour of leaf litter beds persist in time? PLoS ONE 13(12):e0209780. Doi: 10.1371/journal.pone.0209780. DOI: https://doi.org/10.1371/journal.pone.0209780
Kreye, J. K., N. W. Brewer, P. Morgan, J. M. Varner, … and R. D. Ottmar. 2014. Fire behavior in masticated fuels: A review. Forest Ecology and Management 314:193-207. Doi: 10.1016/j.foreco.2013.11.035. DOI: https://doi.org/10.1016/j.foreco.2013.11.035
Kreye, J. K., J. M. Kane, J. M. Varner, and J. K. Hiers. 2020. Radiant heating rapidly increases litter flammability through impacts on fuel moisture. Fire Ecology 16:1-10. Doi: 10.1186/s42408-020-0067-3. DOI: https://doi.org/10.1186/s42408-020-0067-3
Kreye, J. K., J. M. Varner, and E. E. Knapp. 2011. Effects of particle fracturing and moisture content on fire behaviour in masticated fuelbeds burned in a laboratory. International Journal of Wildland Fire 20:308-317. Doi: 10.1071/WF09126. DOI: https://doi.org/10.1071/WF09126
Matsypura, D., O. A. Prokopyev, and A. Zahar. 2018. Wildfire fuel management: Network-based models and optimization of prescribed burning. European Journal of Operational Research 264:774-796. Doi: 10.1016/j.ejor.2017.06.050. DOI: https://doi.org/10.1016/j.ejor.2017.06.050
Meddens, A. J. H., C. A. Kolden, J. A. Lutz, A. M. S. Smith, … and M. A. Krawchuk. 2018. Fire Refugia: What Are They, and Why Do They Matter for Global Change? BioScience 68:944-954. Doi: 10.1093/BIOSCI/BIY103. DOI: https://doi.org/10.1093/biosci/biy103
Miloua, H. 2019. Fire behavior characteristics in a pine needle fuel bed in northwest Africa. Journal of Forestry Research 30:959-967. Doi: 10.1007/s11676-018-0676-8. DOI: https://doi.org/10.1007/s11676-018-0676-8
Morandini, F., Y. Perez-Ramirez, V. Tihay, P. A. Santoni, and T. Barboni. 2013. Radiant, convective and heat release characterization of vegetation fire. International Journal of Thermal Sciences 70:83-91. Doi: 10.1016/J.IJTHERMALSCI.2013.03.011. DOI: https://doi.org/10.1016/j.ijthermalsci.2013.03.011
Morandini, F., P. A. Santoni, J. B. Tramoni, and W. E. Mell. 2019. Experimental investigation of flammability and numerical study of combustion of shrub of rockrose under severe drought conditions. Fire Safety Journal 108:102836. Doi: 10.1016/J.FIRESAF.2019.102836. DOI: https://doi.org/10.1016/j.firesaf.2019.102836
Morandini, F., X. Silvani, J. L. Dupuy, and A. Susset. 2018. Fire spread across a sloping fuel bed: Flame dynamics and heat transfers. Combustion and Flame 190:158-170. Doi: 10.1016/j.combustflame.2017.11.025. DOI: https://doi.org/10.1016/j.combustflame.2017.11.025
Morgan V., J., J. M. Kane, J. K. Kreye, and E. Engber. 2015. The flammability of forest and woodland litter: A synthesis. Current Forestry Reports 1:91–99. Doi: 10.1007/S40725-015-0012-X/FIGURES/1. DOI: https://doi.org/10.1007/s40725-015-0012-x
Ottmar, R. D., A. T. Hudak, S. J. Prichard, C. S. Wright, … and R. E. Vihnanek. 2016. Pre-fire and post-fire surface fuel and cover measurements collected in the south-eastern United States for model evaluation and development - RxCADRE 2008, 2011 and 2012. International Journal of Wildland Fire 25:10-24. Doi: 10.1071/WF15092. DOI: https://doi.org/10.1071/WF15092
Perez-Ramirez, Y., W. E. Mell, P. A. Santoni, J. B. Tramoni, and F. Bosseur. 2017. Examination of WFDS in Modeling Spreading Fires in a Furniture Calorimeter. Fire Technology 53:1795-1832. Doi: 10.1007/S10694-017-0657-Z/FIGURES/27. DOI: https://doi.org/10.1007/s10694-017-0657-z
Rossa, C. G., and P. M. Fernandes. 2018. Empirical Modeling of Fire Spread Rate in No-Wind and No-Slope Conditions. Forest Science 64:358-370. Doi: 10.1093/FORSCI/FXY002. DOI: https://doi.org/10.1093/forsci/fxy002
Rstudio Team. 2020. RStudio: Integrated Development Environmental for R (Version 4.0.3.). R Foundation for Statistical Computing. PBC, Boston, USA. (Enero 12, 2021).
Russell-Smith, J., B. P. Murphy, C. P. (Mick) Meyer, G. D. Cook, … and B. Peter. 2009. Improving estimates of savanna burning emissions for greenhouse accounting in northern Australia: limitations, challenges, applications. International Journal of Wildland Fire 18:1-18. Doi: 10.1071/WF08009. DOI: https://doi.org/10.1071/WF08009
Sánchez-Monroy, X., W. Mell, J. Torres-Arenas, and B. W. Butler. 2019. Fire spread upslope: Numerical simulation of laboratory experiments. Fire Safety Journal 108:102844. Doi: 10.1016/J.FIRESAF.2019.102844. DOI: https://doi.org/10.1016/j.firesaf.2019.102844
Sikkink, P. G., T. B. Jain, J. Reardon, F. A. Heinsch, … and L. S. Baggett. 2017. Effect of particle aging on chemical characteristics, smoldering, and fire behavior in mixed-conifer masticated fuel. Forest Ecology and Management 405:150-165. Doi: 10.1016/j.foreco.2017.09.008. DOI: https://doi.org/10.1016/j.foreco.2017.09.008
Silvani, X., F. Morandini, J. L. Dupuy, A. Susset, … and O. Lambert. 2018. Measuring velocity field and heat transfer during natural fire spread over large inclinable bench. Experimental Thermal and Fluid Science 92:184-201. Doi: 10.1016/J.EXPTHERMFLUSCI.2017.11.020. DOI: https://doi.org/10.1016/j.expthermflusci.2017.11.020
Tihay, V., F. Morandini, P. A. Santoni, Y. Perez-Ramirez, and T. Barboni. 2014. Combustion of forest litters under slope conditions: Burning rate, heat release rate, convective and radiant fractions for different loads. Combustion and Flame 161:3237-3248. Doi: 10.1016/J.COMBUSTFLAME.2014.06.003. DOI: https://doi.org/10.1016/j.combustflame.2014.06.003
Varner, J. M., S. M. Hood, D. P. Aubrey, K. Yedinak, … and E. M. Rowell. 2021. Tree crown injury from wildland fires: causes, measurement and ecological and physiological consequences. New Phytologist 231:1676-1685. Doi: 10.1111/NPH.17539. DOI: https://doi.org/10.1111/nph.17539
Yang, Z., and H. X. Chen. 2018. Experimental Study on Flame Geometry along the Inclined Surface with and without Sidewalls by Using a Gas Burner. In Procedia Engineering, 211:925-933. Doi: 1016/J.PROENG.2017.12.094. DOI: https://doi.org/10.1016/j.proeng.2017.12.094
Yokelson, R. J., I. R. Burling, J. B. Gilman, C. Warneke, … and D. R. Weise. 2013. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires. Atmospheric Chemistry and Physics 13:89-116. Doi: 10.5194/acp-13-89-2013. DOI: https://doi.org/10.5194/acp-13-89-2013
Zar, J. H. 2010. Biostatiscal Analysis. 5th Edition. Prentice-Hall/Pearson, Upper Saddle River New Jersey, USA. 944 p.

Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Mexicana de Ciencias Forestales

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Forestales accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Forestales recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access.
All the texts published by Revista Mexicana de Ciencias Forestales –with no exception– are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Forestales (for example, include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Forestales.
For all the above, the authors shall send the form of Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: ciencia.forestal2@inifap.gob.mx
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.