Observaciones fenológicas en clones de Pinus patula Schltdl. & Cham.

Authors

  • Sara Irene Velasco-Hernández Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales, INIFAP.
  • Liliana Muñoz Gutiérrez Instituto Nacional de Investigaciones Forestales, Agrícolas Y Pecuarias

DOI:

https://doi.org/10.29298/rmcf.v15i86.1482

Keywords:

degree-day, feminine receptiveness, phephenological synchronization, pollen dispersal

Abstract

The lack of floral synchronization in a seed orchard generates a decrease in the genetic diversity of the seed lot, increases the percentage of abortive ovules and empty seeds. Therefore, it is necessary to determine the phenological stages and the degree of synchronization between pollen dispersal and female receptivity.  In a second generation Pinus patula clonal seed orchard, the start, end and duration dates of each phenological stage of the male and female reproductive structures were determined with macro SYNCHRO. The female receptivity period had an average duration of 20 days and the pollen dispersal period of 22.5 days. Both events are related to temperature, the onset of both events occurred when 516 degree-days were accumulated on average; while the general synchronization index of the orchard is considered low (PO=0.24) so there is no total synchronization between clone pairs; a positive correlation was found between the duration of both phenological events, but with lag in the onset periods, however, pollination can be carried out between the clones of the orchard and obtain quality seed, it is necessary to determine the variability and genetic control of the clones in subsequent evaluations.

Downloads

References

AccuWeather. 2022. Aquixtla, Puebla. https://www.accuweather.com/es/mx/aquixtla/1070130/february-weather/1070130?year=2022. (30 de mayo de 2023).

Askew, G. R. 1986. Implications of non-synchronous flowering in clonal conifer seed orchards. In: Hatcher, A. V. and R. J. Weir (Eds.). IUFRO Joint Meeting of Working Parties on Breeding Theory, Progeny Testing and Seed Orchards, Williamsburg, Virginia. Tree Improvement Co-operative, North Carolina State University. Raleigh, NC, USA. pp. 182-191.

Askew, G.R. y T.D. Blush. 1990. An index of phenological overlap in flowering for clonal conifer seed orchards. Short note. Silvae Genetica 37:227-232.

Burczyk, J. and W. Chalupka. 1997. Flowering and cone production variability and its effect on parental balance in a Scots pine clonal seed orchard. Annals of Forest Science 54: 129-144. Doi: 10.1051/forest:19970201. DOI: https://doi.org/10.1051/forest:19970201

Chaisurisi, K. and Y. A. El-Kassaby. 1993. Estimation of clonal contribution to cone and seed crops in a Sitka spruce seed orchard. Annals of Forest Science 50: 461-467. Doi: 10.1051/forest:19930504. DOI: https://doi.org/10.1051/forest:19930504

Chaix, G., P. Vigneron, V. Razafimaharo and S. Hamon. 2007. Are phenological observations sufficient to estimate the quality of seed crops from a Eucalyptus grandis open-pollinated seed orchard? Consequences for seed collections. New Forests 33: 41-52. https://link.springer.com/article/10.1007/s11056-006-9012-9. (12 de marzo de 2022). DOI: https://doi.org/10.1007/s11056-006-9012-9

Codesido, V., E. Merlo and J. Fernández-López. 2005. Variation in reproductive phenology in a Pinus radiata D. Don seed orchard in Northern Spain. Silvae Genetica 54(4): 246-256. Doi: 10.1515/sg-2005-0035. DOI: https://doi.org/10.1515/sg-2005-0035

Comisión Nacional Forestal (Conafor). 2011. Sistema de información Forestal. https://snif.cnf.gob.mx/. (23 de septiembre de 2024).

Copes, D. L. and R. A. Sniezko. 1991. The influence of floral bud phenology on the potential mating system of a wind-pollinated Douglas-fir orchard. Canadian Journal of Forest Research 21: 813-820. Doi:10.1139/z91-114. DOI: https://doi.org/10.1139/x91-114

Di-Giovanni, P. and P. G. Kevan. 1991. Factors affecting pollen dynamics and its importance to pollen competition: a review. Canadian Journal of Forest Research 21: 1151-1170. Doi: 10.1139/x91-163. DOI: https://doi.org/10.1139/x91-163

Dvorak, W. S., J. K. Donahue and J. A. Vasquez. 1995. Early performance of CAMCORE introductions of Pinus patula in Brazil, Colombia and South Africa. South African Forestry Journal 174(1): 23-33. Doi: 10.1080/00382167.1995.9629875. DOI: https://doi.org/10.1080/00382167.1995.9629875

El-Kassaby, Y. A. and S. Reynolds. 1990. Reproductive phenology, parental balance, and supplemental mass pollination in a Sitka spruce seed-orchard. Forest Ecology and Management 31: 45-54. Doi: 10.1016/0378-1127(90)90110-W. DOI: https://doi.org/10.1016/0378-1127(90)90110-W

El-Kassaby, Y. A., A. M. K. Fashler and O. Sziklai. 1984. Reproductive phenology and its impact on genetically improved seed production in a Douglas-fir seed orchard. Silvae Genetica 33: 120–125. https://www.cabidigitallibrary.org/doi/full/10.5555/19850699179. (12 de marzo de 2022).

Erickson, V. J. and W. T. Adams. 1989. Mating success in a coastal Douglas-fir seed orchard as affected by distance and floral phenology. Canadian Journal of Forest Research 19(10): 1248-1255. Doi: 10.1139/x89-190. DOI: https://doi.org/10.1139/x89-190

Escobar-Sandoval, M.C., J. J. Vargas-Hernández, J. López-Upton, S. Espinosa-Zaragoza y A. Borja-de la Rosa. 2018. Parámetros genéticos de calidad de madera, crecimiento y ramificación en Pinus patula. Madera y Bosques 24(2): e2421595. Doi: 10.21829/myb.2018.2424595. DOI: https://doi.org/10.21829/myb.2018.2421595

Funda, T. y Y.A. El-Kassaby. 2012. Seed orchard genetics. CAB Reviews 7. Doi:10.1079/PAVSNNR20127013. DOI: https://doi.org/10.1079/PAVSNNR20127013

Griffin, A. R. 1984. Clonal variation in radiata pine seed orchards. 2. Flowering phenology. Australian Forest Research 14:271-281. https://www.cabidigitallibrary.org/doi/full/10.5555/19850605058. (25 de agosto de 2022).

Hernández-Zaragoza, O., J. López-Upton, J. J. Vargas-Hernández y M. Jiménez C. 2016. Variación clonal de la fenología reproductiva en un huerto semillero de Pinus patula. Bosque 37(2): 255-264. Doi: 10.4067/S0717-92002016000200004. DOI: https://doi.org/10.4067/S0717-92002016000200004

Jaquish, B.C. 2004. Abasto y manejo de semillas a partir de la recolección en rodales naturales, áreas de producción y huertos semilleros. En: Vargas, H. J.J., B. Bermejo V, y F.T. Ledig (eds). Manejo de recursos genéticos forestales, Colegio de Postgraduados y Comisión Nacional Forestal. pp. 78-89.

Jonsson A., I. Ekberg and G. Eriksson. 1976. Flowering in a seed orchard of Pinus sylvestris. Studia Forestalia Suecica 6: 1-38. https://pub.epsilon.slu.se/5612/1/SFS135.pdf. (5 de febrero de 2022).

Kang, K. S., D. Lindgren and T. J. Mullin. 2004. Fertility variation, genetic relatedness, and their impacts on gene diversity of seeds from a seed orchard of Pinus thunbergii. Silvae Genetica 53: 202-206. https://intapi.sciendo.com/pdf/10.1515/sg-2004-0037. (12 de marzo de 2022). DOI: https://doi.org/10.1515/sg-2004-0037

Lozada, B. & L. R. Angelocci. 1997. Determinacao da temperatura-base e de graus-dia na estimativa de duracao dos subperiodos de desenvolvimento do milho. In: Anais Congreso Brasileiro de Agrometeorologia. SBA, Piracicaba, Brasil. Pp. 9-11.

Luomajoki, A. 1993. Climatic adaptation of Scots pine (Pinus sylvestris L.) in Finland based on male flowering phenology. Acta Forestalia Fennica 237: 27. http://hdl.handle.net/1975/9343. (22 de octubre de 2022). DOI: https://doi.org/10.14214/aff.7683

Matziris D. 1994. Genetic variation in the phenology of flowering in Black pine. Silvae Genetica 43(5-6): 321-328. https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1994/Vol._43_Heft_5-6/43_5-6_321.pdf. (22 de octubre de 2022).

Muñoz-Gutiérrez, L., J. J. Vargas-Hernández, J. López-Upton, C. Ramírez-Herrera, M. Jiménez-Casas, A. Aldrete y R. Díaz-Ruíz. 2017. Variación espacial y temporal en la dispersión de polen en un huerto semillero y en rodales naturales cercanos de Pinus patula. Bosque 38(1): 169-181. Doi: 10.4067/S0717-92002017000100017. DOI: https://doi.org/10.4067/S0717-92002017000100017

Muñoz-Gutiérrez, L., J. J. Vargas-Hernández, J. López-Upton, C. Ramírez-Herrera, M. Jiménez-Casas and A. Aldrete. 2019. Variation on reproductive phenology in a Pinus patula seed orchard and risk of genetic contamination from nearby natural stands. New Forests 50: 1027-1041. Doi:10.1007/s11056-019-09712-1. DOI: https://doi.org/10.1007/s11056-019-09712-1

Nikkanen T. 2001. Reproductive phenology in a Norway spruce seed orchard. Silva Fennica 35: 39-53. https://jukuri.luke.fi/bitstream/handle/10024/532525/Nikkanen.pdf?sequence=1. (15 de marzo de 2023). DOI: https://doi.org/10.14214/sf.602

Nikkanen, T. and S. Ruotsalainen. 2000. Variation in flowering abundance and its impact on the genetic diversity of the seed crop in a Norway spruce seed orchard. Silva Fennica 34(3): 205-222. Doi: 10.14214/sf.626. DOI: https://doi.org/10.14214/sf.626

Nyoka, B. I. 2002. Pinus patula Schiede ex Schltdl. & Cham. In: CAB International (Comp.). Pines of silvicultural importance. CABI Publising. London, UK. pp. 303-316.

Randriambanina H., J. R. Randriamalala and S. M. Carriére. 2019. Native forest regeneration and vegetation dynamics in non-native Pinus patula tree plantations in Madagascar. Forest Ecology and Management 446: 20-28. Doi: 10.1016/j-foreco.2019.05.019 DOI: https://doi.org/10.1016/j.foreco.2019.05.019

Rodríguez-Martín, J.A. 2001. Variabilidad reproductiva y sus implicaciones en el incremento de la producción de semilla en un huerto semillero de Pinus sylvestris. Tesis doctoral. E.T.S.I. Montes. https://doir.org/10.20868/UPM.thesus.649

Ruíz-Farfán, D. de G., J. López-Upton, C. Ramírez-Herrera y D. A. Rodríguez-Trejo. 2015. Fenología reproductiva en un ensayo de progenies de Pinus greggii var. australis. Revista Fitotecnia Mexicana 38(3): 285-296. Doi: 10.35196/rfm.2015.3.285. DOI: https://doi.org/10.35196/rfm.2015.3.285

Salaya-Domínguez, J.M., J. López-Upton y J. J. Vargas-Hernández. 2012. Variación genética y ambiental en dos ensayos de progenie de Pinus patula. Agrociencia 46(5): 519-534.

Stadistical Analysis Software (SAS). 2013. User’s Guide Statistics Version 9.4. SAS Institute Inc. Cary, NC, United States of America. 5136 p.

Tadesse, W., T. Fidalgo F. 2022. Pinus patula plantations in Africa: an overview of its silvicultural traits and use under SDG. Conifers-Recent Advances. IntechOpen. Doi: 10.5772/intchopen.104889. DOI: https://doi.org/10.5772/intechopen.104889

Torimaru, T., U. Wennström, B. Andersson, C. Almqvist and X. R. Wang. 2013. Reduction of pollen contamination in Scots pine seed orchard crop by tent isolation. Scandinavian Journal of Forest Research 28: 715-723. Doi: 10.1080/02827581.2013.838298. DOI: https://doi.org/10.1080/02827581.2013.838298

Wang, X., D. Lindgren, A. E. Szmidt and R. Yazdani. 1991. Pollen migration into a seed orchard of Pinus sylvestris L. and the methods of its estimation using allozyme markers. Scandinavian Journal of Forest Research 6: 379-385. Doi: 10.1080/02827589109382675. DOI: https://doi.org/10.1080/02827589109382675

Webber, J.E. 1995. Pollen management for intensive seed orchard production. Tree Physiology 15:507-514. Doi: 10.1093/treephys/15.7-8.507. DOI: https://doi.org/10.1093/treephys/15.7-8.507

Zas, R., E. Merlo and J. Fernández. 2003. SYNCHRO: A SAS program for analyzing the floral phenological synchronization in seed orchards. Silvae Genetica 52(5): 212-215.

http://hdl.handle.net/10261/101387. (15 de mayo de 2022). DOI: https://doi.org/10.1016/S1936-6574(22)00137-6

Published

2024-11-12

How to Cite

Velasco-Hernández, Sara Irene, and Liliana Muñoz Gutiérrez. 2024. “ Cham”. Revista Mexicana De Ciencias Forestales 15 (86). México, ME:144-66. https://doi.org/10.29298/rmcf.v15i86.1482.

Issue

Section

Scientific article