Evaluation of rain partitioning in two tree species with Arduino
DOI:
https://doi.org/10.29298/rmcf.v15i85.1459Keywords:
Flujo caulinar, flujo de dosel, hidrología forestal, humedad del suelo, monitoreo ambiental, sensoresAbstract
This research focuses on the calibration of an electronic monitoring system to evaluate the distribution of precipitation in two tree species: stemflow, throughfall and soil moisture. This system, focused on the application of the Arduino platform that incorporates water collection equipment, tipping buckets and humidity sensors, offers an accurate and low-cost methodology for detailed analysis of rain partitioning. This type of analysis is a critical aspect to understand the impact of vegetation covers on hydrological cycles. The lack of accessible and efficient monitoring methods has hindered a better understanding of rainfall partitioning in forest ecosystems. Calibration of tipping buckets, used to determine rainfall partitioning, have shown exceptional performance under low rainfall conditions (R2=0.9556 to R2=0.9878), as have soil moisture sensors. The analysis of the data collected from the tipping buckets showed a high Coefficient of determination between stemflow and direct precipitation, throughfall and direct precipitation (R2>0.8345 and R2>0.7723, respectively). For the moisture sensors, R2>0.5377 was obtained in the data recorded in the field. The results obtained help a better analysis of the hydrological cycle between different tree species.
Downloads
References
Arduino. 2021. Arduino IDE (Versión 1.8.16). Ivrea, TO, Italia. Arduino. https://www.arduino.cc/en/software. (19 de noviembre de 2023).
Barbosa M., F., D. S. Fernández R., E. Rubio G., I. Sánchez C. y J. R. Contreras H. 2016. Dinámica del agua de lluvia en árboles de selva baja caducifolia. Revista Mexicana de Ciencias Agrícolas 7(5):1179-1188. Doi: 10.29312/remexca.v7i5.241. DOI: https://doi.org/10.29312/remexca.v7i5.241
Bitella, G., R. Rossi, R. Bochicchio, M. Perniola and M. Amato. 2014. A novel low-cost open-hardware platform for monitoring soil water content and multiple soil-air-vegetation parameters. Sensors 14(10):19639-19659. Doi: 10.3390/s141019639. DOI: https://doi.org/10.3390/s141019639
Cheng, R.-R., Q.-W. Chen, J.-G. Zhang, W.-Y. Shi, G. Li and S. Du. 2020. Soil moisture variations in response to precipitation in different vegetation types: A multi-year study in the loess hilly region in China. Ecohydrology 13(3):e2196. Doi: 10.1002/eco.2196. DOI: https://doi.org/10.1002/eco.2196
Chrit, M. 2022. Ensemble calibration and uncertainty quantification of precipitation forecasts for a risk-based UAS Navigation. https://d197for5662m48.cloudfront.net/documents/publicationstatus/117374/preprint_pdf/eb72b3111da15500d2bee67c85facf6d.pdf. (25 de noviembre de 2023).
Divani, D., P. Patil and S. K. Punjabi. 2016. Automated plant watering system. In: Institute of Electrical and Electronic Engineers (IEEE) (Edit.). 2016 International Conference on Computation of Power, Energy Information and Communication (ICCPEIC). IEEE. Melmaruvathur, TN, India. pp. 180-182. DOI: https://doi.org/10.1109/ICCPEIC.2016.7557245
dos Santos, B. C., M. S. Duarte S., D. N. Buarque P., P. H de Souza and A. R. Bruno T. 2020. Low cost rain gauge prototype for studies and monitoring of precipitation in anthropized watersheds. Cuaderno de Geografía 30(63):923-935. Doi: 10.5752/p.2318-2962.2019v30n63p923. DOI: https://doi.org/10.5752/P.2318-2962.2020v30n63p923
Edwards, I. J., W. D. Jackon and P. M. Fleming. 1974. Tipping bucket gauges for measuring runoff from experimental plots. Agricultural Meteorology 13(2):189-201. Doi: 10.1016/0002-1571(74)90046-6. DOI: https://doi.org/10.1016/0002-1571(74)90046-6
Fankhauser, R. 1997. Measurement properties of tipping bucket rain gauges and their influence on urban runoff simulation. Water Science & Technology 36(8-9):7-12. Doi: 10.2166/wst.1997.0636. DOI: https://doi.org/10.2166/wst.1997.0636
Frost, E. E. and D. F. Levia. 2014. Hydrologic variation of stemflow yield across co- occurring dominant canopy trees of varying mortality. Ecohydrology 7(2):760-770. Doi: 10.1002/eco.1397. DOI: https://doi.org/10.1002/eco.1397
García, E. 1968. Los climas del Valle de México. Colegio de Postgraduados. Texcoco, Edo. Méx., México. 57 p.
Gil-Marin, J., M. Cordova-Rodriguez y A. Zermeño-Gonzalez. 2022. Calibración de sensores de reflectometría de dominio temporal en suelos ultisoles de sabana. Anales Científicos 83(1):57-66. Doi: 10.21704/ac.v83i1.1884. DOI: https://doi.org/10.21704/ac.v83i1.1884
Gómez-Tagle C., A., A. F. Gómez-Tagle R., J. A. Ávila O. y L. A. Bruijnzeel. 2015. Partición de la precipitación en un bosque tropical montano de pino-encino en el centro de México. Bosque 36(3):505-518. Doi: 10.4067/S0717-92002015000300017. DOI: https://doi.org/10.4067/S0717-92002015000300017
Habib, E. H., E. A. Meselhe and A. V. Aduvala. 2008. Effect of local errors of tipping-bucket rain gauges on rainfall-runoff simulations. Journal of Hydrologic Engineering 13(6):488-496. Doi: 10.1061/(ASCE)1084-0699(2008)13:6(488). DOI: https://doi.org/10.1061/(ASCE)1084-0699(2008)13:6(488)
Hudson, N. 1993. Field measurement of soil erosion and runoff. Food and Agriculture Organization of the United Nations (FAO). Rome, RM, Italy. 139 p. https://www.fao.org/4/T0848E/T0848E00.htm. (19 de noviembre de 2023).
Jasso M., J. y L. Pimentel B. 1985. Establecimiento de áreas verdes en el predio Montecillo aledaño a Chapingo. In: Secretaría de Agricultura y Recursos Hidráulicos (SARH) (Edit.). III Reunión Nacional sobre Plantaciones Forestales. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). México, D. F., México. pp. 606-640.
Kalashnikov, A., H. Zhang, J. Jennings and M. M. Abramriuk. 2017. Remote laboratory: using Internet-of-Things (IoT) for E-learning. In: Faculty of Electronics and Information Technologies (Edit.). The Vth International Conference «Advanced Information Systems and Technologies, AIST 2017». Ukrainian Federation of Informatics. Sumy, BM, Ukraine. pp. 43-46.
Keim, R. F., A. E. Skaugset and M. Weiler. 2005. Temporal persistence of spatial patterns in throughfall. Journal of Hydrology 314(1-4):263-274. Doi: 10.1016/j.jhydrol.2005.03.021 . DOI: https://doi.org/10.1016/j.jhydrol.2005.03.021
Krishnamurthi, K., S. Thapa, L. Kothari and A. Prakash. 2015. Arduino Based Weather Monitoring System. International Journal of Engineering Research and General Science 3(2):452-458. https://pnrsolution.org/Datacenter/Vol3/Issue2/64.pdf. (19 de noviembre de 2023).
Lee, D. W., K. Baskaran, M. Mansor, H. Mohamad and S. K. Yap. 1996. Irradiance and spectral quality affect Asian tropical rain forest tree seedling development. Ecology 77(2):568-580. Doi: 10.2307/2265631. DOI: https://doi.org/10.2307/2265631
Levia, D. F. and E. E. Frost. 2006. Variability of throughfall volume and solute inputs in wooded ecosystems. Progress in Physical Geography: Earth and Environment 30(5):605-632. Doi: 10.1177/0309133306071145. DOI: https://doi.org/10.1177/0309133306071145
Lloyd, C. R. and A. de O Marques F. 1988. Spatial variability of throughfall and stemflow measurements in Amazonian rainforest. Agricultural and Forest Meteorology 42(1):63-73. Doi: 10.1016/0168-1923(88)90067-6 . DOI: https://doi.org/10.1016/0168-1923(88)90067-6
Manfroi, O. J., K. Koichiro, T. Nobuaki, S. Masakazu, … and L. Chong. 2004. The stemflow of trees in a Bornean lowland tropical forest. Hydrological Process 18(13):2455-2474. Doi: https://doi.org/10.1002/hyp.1474. DOI: https://doi.org/10.1002/hyp.1474
Morin, J., D. Goldberg and I. Seginer. 1967. A rainfall simulator with rotating disk. Transactions of the American Society of Agricultural Engineers 10:74-77. Doi: 10.13031/2013.39599. DOI: https://doi.org/10.13031/2013.39599
Munishi, P. K. T. and T. H. Shear. 2005. Rainfall interception and partitioning in afromontane rain forests of the eastern arc mountains, Tanzania: implications for water conservation. Journal of Tropical Forest Science 17(3):355-365. https://jtfs.frim.gov.my/jtfs/article/view/1045/881. (19 de noviembre de 2023).
Placidi, P., L. Gasperini, A. Grassi, M. Cecconi and A. Scorzoni. 2020. Characterization of low-cost capacitive soil moisture sensors for IoT networks. Sensors 20(12):3585. Doi: 10.3390/s20123585. DOI: https://doi.org/10.3390/s20123585
Rahman, M., N. E-Jannat, O. Islam and S. Salakin. 2015. Arduino and GSM based smart energy meter for advanced metering and billing system. In: Institute of Electrical and Electronic Engineers (IEEE) (Edit.). 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT). IEEE. Savar, D, Bangladés. pp. 1-6. DOI: https://doi.org/10.1109/ICEEICT.2015.7307498
Santana, M. A. A., P. L. O. Guimarães, L. G. Lanza and E. Vuerich. 2015. Metrological analysis of a gravimetric calibration system for tipping‐bucket rain gauges. Meteorological Applications 22(S1):879-885. Doi: 10.1002/met.1540. DOI: https://doi.org/10.1002/met.1540
Segovia-Cardozo, D. A., C. Bernal-Basurco and L. Rodríguez-Sinobas. 2023. Tipping bucket rain gauges in hydrological research: Summary on measurement uncertainties, calibration, and error reduction strategies. Sensors 23(12):5385. Doi: 10.3390/s23125385. DOI: https://doi.org/10.3390/s23125385
Shedekar, V. S., K. W. King, L. C. Brown, N. R. Fausey, M. Heckel and R. D. Harmel. 2009. Measurement errors in tipping bucket rain gauges under different rainfall intensities and their implication to hydrologic models. In: American Society of Agriculture and Biological Engineers (ASABE) (Edit.). 2009 ASABE Annual International Meeting Sponsored. ASABE. Reno, NV, United States of America. pp. 1-9.
Shedekar, V. S., K. W. King, N. R. Fausey, A. B. O. Soboyejo, R. D. Harmel and L. C. Brown. 2016. Assessment of measurement errors and dynamic calibration methods for three different tipping bucket rain gauges. Atmospheric Research 178-179:445-458. Doi: 10.1016/j.atmosres.2016.04.016. DOI: https://doi.org/10.1016/j.atmosres.2016.04.016
Somavilla, A., P. I. Gubiani and A. L. Zwirtz. 2019. Tipping bucket prototype for automatic quantification of surface runoff rate in plots. Revista Brasileira de Ciência do Solo 43:1-7. Doi: 10.1590/18069657rbcs20180096. DOI: https://doi.org/10.1590/18069657rbcs20180096
Staelens, J., A. De Schrijver, K. Verheyen and N. E. C. Verhoest. 2006. Spatial variability and temporal stability of throughfall water under a dominant beech (Fagus sylvatica L.) tree in relationship to canopy cover. Journal of Hydrology 330(3-4):651-662. Doi: 10.1016/j.jhydrol.2006.04.032. DOI: https://doi.org/10.1016/j.jhydrol.2006.04.032
Strangeways, I. 2007. Precipitation: Theory, measurement and distribution. Cambridge University Press. Cambridge, Cambs., United Kingdom. 290 p.
Van Stan II, J. T., C. M. Siegert, D. F. Levia and C. E. Scheick. 2011. Effects of wind-driven rainfall on stemflow generation between codominant tree species with differing crown characteristics. Agricultural and Forest Meteorology 151(9):1277-1286. Doi: 10.1016/j.agrformet.2011.05.008. DOI: https://doi.org/10.1016/j.agrformet.2011.05.008
Zimmermann, B., H. Elsenbeer and J. M. De Moraes. 2006. The influence of land-use changes on soil hydraulic properties: Implications for runoff generation. Forest ecology and Management 222(1-3):29-38. Doi: 10.1016/j.foreco.2005.10.070. DOI: https://doi.org/10.1016/j.foreco.2005.10.070
Zimmermann, A., W. Wilcke and H. Elsenbeer. 2007. Spatial and temporal patterns of throughfall quantity and quality in a tropical montane forest in Ecuador. Journal of Hydrology 343(1-2):80-96. Doi: 10.1016/j.jhydrol.2007.06.012. DOI: https://doi.org/10.1016/j.jhydrol.2007.06.012
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Mexicana de Ciencias Forestales
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Forestales accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Forestales recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access.
All the texts published by Revista Mexicana de Ciencias Forestales –with no exception– are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Forestales (for example, include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Forestales.
For all the above, the authors shall send the form of Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: ciencia.forestal2@inifap.gob.mx
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.