Cloning of Pinus patula by grafting: effect of phenology and type of scion

Authors

DOI:

https://doi.org/10.29298/rmcf.v15i82.1451

Keywords:

Side veneer graft, phenological stages, scions with terminal buds, basal scions

Abstract

Grafts allow the cloning of select genotypes, but the lack of sprouting in conifers is common due to intrinsic causes and the grafting process. The objective was to evaluate the sprouting and survival of side veneer grafts of Pinus patula with the use of scions from donor trees in three phenological stages (dormancy, beginning of growth and full growth), two types of scions (terminal buds and basal scions) and their interaction, in addition to determining the average sprouting time due to the effect of the treatments. A completely randomized experimental design was used with a 3x2 factorial arrangement with 16 repetitions. The evaluation was biweekly until 90 days after grafting. Analysis of variance was performed to detect differences between treatments and the accelerated failure time and Weibull hazard ratio models were adjusted to estimate the average graft sprouting time and probability of death, respectively. No significant differences were found (p<0.05) between treatments. In all combinations there was sprouting (79.2 to 90.3 %) and survival varied between 58 and 83 %. 100 % of sprouting was obtained with terminal buds in dormancy and basal scions in full growth, while the highest survival (75 %) was obtained with basal scions at the beginning of growth and terminal buds in full growth. The shortest average sprouting time was obtained when grafting basal scions (15 days). P. patula can be successfully cloned at any phenological stage and with the use of both types of scions evaluated.

Downloads

Download data is not yet available.

References

Almqvist, C. 2013. Survival and strobili production in top grafted scions from young Pinus sylvestris seedlings. Scandinavian Journal of Forest Research 28(6):533-539. Doi: 10.1080/02827581.2013.803598. DOI: https://doi.org/10.1080/02827581.2013.803598

Aparicio-Rentería, A., S. F. Juárez-Cerrillo y L. R. Sánchez-Velásquez. 2014. Propagación por enraizamiento de estacas y conservación de árboles plus extintos de Pinus patula procedentes del norte de Veracruz, México. Madera y Bosques 20(1):85-96. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-04712014000100008. (25 de septiembre de 2023). DOI: https://doi.org/10.21829/myb.2014.201178

Barrera-Ramírez, R., J. J. Vargas-Hernández, R. López-Aguillón, H. J. Muñoz-Flores, E. J. Treviño-Garza y O. A. Aguirre-Calderón. 2021. Influencia de factores externos e internos en el prendimiento inicial de injertos de Pinus pseudostrobus var. oaxacana (Mirov) Harrison. Revista Chapingo Serie Ciencias Forestales y del Ambiente 27(2):243-256. Doi: 10.5154/r.rchscfa.2020.05.037. DOI: https://doi.org/10.5154/r.rchscfa.2020.05.037

Castro-Garibay, S. L., Á. Villegas-Monter, J. López-Upton, M. Sandoval-Villa and L. Arévalo-Galarza. 2022. Effective protocol to increase the percentage of grafting success of Pinus greggii Engelm. var. australis Donahue et López. Revista Chapingo Serie Ciencias Forestales y del Ambiente 28(2):225-240. Doi: 10.5154/r.rchscfa.2021.03.014. DOI: https://doi.org/10.5154/r.rchscfa.2021.03.014

Darikova, J. A., Y. V. Savva, E. A. Vaganov, A. M. Grachev and G. V. Kuznetsova. 2011. Grafts of woody plants and the problem of incompatibility between scion and Rootstock (a review). Journal of Siberian Federal University, Biology 1(4):54-63. Doi: 10.17516/1997-1389-0185. DOI: https://doi.org/10.17516/1997-1389-0185

González-Jiménez, B., M. Jiménez-Casas, J. López-Upton, M. Á. López-López and R. Rodríguez-Laguna. 2022. Combination of grafting techniques to clone superior genotypes of Pinus patula Schiede ex Schltdl. et Cham. Agrociencia 56(5):1-12. Doi: 10.47163/agrociencia.v56i5.2582. DOI: https://doi.org/10.47163/agrociencia.v56i5.2582

González-Jiménez, B., M. Jiménez-Casas, J. López-Upton, M. Á. López-López y R. Rodríguez-Laguna. 2023. Compatibilidad de la púa y el portainjerto en Pinus patula Schiede ex Schltdl. & Cham. como respuesta a la variación genotípica. Revista Chapingo Serie Ciencias Forestales y del Ambiente 29(1):147-161. Doi: 10.5154/r.rchscfa.2022.08.061. DOI: https://doi.org/10.5154/r.rchscfa.2022.08.061

Hartmann, H. T., D. E. Kester and F. T. Davies. 2010. Hartmann and Kester’s plant propagation: Principles and practices. Pearson College Div. Edinburgh, EH, Scotland. 915 p.

Leibing, C., J. Signer, M. van Zonneveld, A. Jarvis and W. Dvorak. 2013. Selection of provenances to adapt tropical pine forestry to climate change on the basis of climate analogs. Forests 4(1):155-178. Doi: 10.3390/f4010155. DOI: https://doi.org/10.3390/f4010155

Marmolejo G., D., G. López O., K. J. Marmolejo G. y R. Ingaruca L. 2020. Compatibilidad de multipatrón/yema y resistencia a antracnosis de guanábana (Annona muricata L.). Agroindustrial Science 10(1):29-35. Doi: 10.17268/agroind.sci.2020.01.04. DOI: https://doi.org/10.17268/agroind.sci.2020.01.04

Muñoz F., H. J., J. Á. Prieto R., A. Flores G., T. Pineda O. y E. Morales G. 2013. Técnicas de injertado “enchapado lateral” y “fisura terminal” en Pinus pseudostrobus Lindl. INIFAP-Campo Experimental Valle del Guadiana. Durango, Dgo., México. 48 p.

Muñoz-Gutiérrez, L., J. J. Vargas-Hernández, J. López-Upton, C. Ramírez-Herrera, … y R. Díaz-Ruíz. 2017. Variación espacial y temporal en la dispersión de polen en un huerto semillero y en rodales naturales cercanos de Pinus patula. Bosque 38(1):169-181. Doi: 10.4067/S0717-92002017000100017. DOI: https://doi.org/10.4067/S0717-92002017000100017

Pérez-Luna, A., J. Á. Prieto-Ruiz, J. López-Upton, A. Carrillo-Parra, … and J. C. Hernández-Díaz. 2019. Some factors involved in the success of side veneer grafting of Pinus engelmannii Carr. Forests 10(2):112. Doi: 10.3390/f10020112. DOI: https://doi.org/10.3390/f10020112

Pérez-Luna, A., J. C. Hernández-Díaz, C. Wehenkel, S. L. Simental-Rodríguez, J. Hernández-Velasco and J. Á. Prieto-Ruiz. 2021. Graft survival of Pinus engelmannii Carr. in relation to two grafting techniques with dormant and sprouting buds. PeerJ 9:e12182. Doi: 10.7717/peerj.12182. DOI: https://doi.org/10.7717/peerj.12182

Solorio-Barragán, E. R., P. Delgado-Valerio, A. Molina-Sánchez, V. Rebolledo-Camacho and M. Á. Tafolla-Martínez. 2021. Interspecific grafting as an alternative for asexual propagation of Pinus rzedowskii Madrigal & Caball. Del. in danger extinction. Revista Chapingo Serie Ciencias Forestales y del Ambiente 27(2):277-288. Doi: 10.5154/r.rchscfa.2020.06.046. DOI: https://doi.org/10.5154/r.rchscfa.2020.06.046

Statistical Analysis System Institute (SAS). 2013. SAS computer software version 9.4. The SAS Institute Inc. Cary, NC, United States of America.

Stewart, J. F., R. Will, B. S. Crane and C. D. Nelson. 2017. Occurrence of shortleaf x loblolly pine hybrids in shortleaf pine orchards: implications for ecosystem restoration. Forest Science 63(2):225-231. Doi: 10.5849/forsci.15-167. DOI: https://doi.org/10.5849/forsci.15-167

Świerczyński, S., M. Kolasiński, A. Stachowiak and M. Rybus-Zając. 2020. Influence of rootstocks and the time of grafting procedure on the efficiency of propagation by grafting two cultivars of mountain pine (Pinus mugo Turra) and estimation of chloroplast pigments level in the needles. Acta Scientiarum Polonorum Hortorum Cultus 19(2):75-85. Doi: 10.24326/asphc.2020.2.8. DOI: https://doi.org/10.24326/asphc.2020.2.8

Yuan, H., S. Niu, X. Zhou, Q. Du, Y. Li and W. Li. 2016. Evaluation of seed production in a first-generation seed orchard of Chinese pine (Pinus tabuliformis). Journal of Forestry Research 27(5):1003-1008. Doi: 10.1007/s11676-016-0238-x. DOI: https://doi.org/10.1007/s11676-016-0238-x

Published

2024-02-28

How to Cite

Pérez-Luna, Alberto, Javier López Upton, José Ángel Prieto-Ruíz, and Rubén Barrera-Ramírez. 2024. “Cloning of Pinus Patula by Grafting: Effect of Phenology and Type of Scion”. Revista Mexicana De Ciencias Forestales 15 (82). México, ME:29-49. https://doi.org/10.29298/rmcf.v15i82.1451.

Issue

Section

Scientific article