Prominent wood protection methods

Authors

  • Víctor Daniel Núñez Retana Universidad Autónoma de Nuevo León
  • Marco Aurelio González Tagle
  • Humberto González Rodríguez
  • María Inés Yáñez Díaz
  • Wibke Himmelsbach Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29298/rmcf.v15i84.1441

Keywords:

wood degradation, durability, nanotechnology, wood preservation, chemical treatments, thermal treatments

Abstract

Wood is a material widely used in construction, furniture, and other applications. Technologies are used to protect its quality and durability against biological damage and the effects of water, temperature and radiation that affect its physical and mechanical properties. The present work reviews the available treatments, evaluates their advantages and disadvantages, and defines the criteria for their use. The theme was divided into two sections: (I) Wood degrading agents, and (II) A classification of protection technologies that included both the traditional methods and novel approaches such as nanotechnology. The conclusions obtained with this approach point to the fact that several traditional chemical treatments substantially reduce biological damage and moisture absorption in wood. However, potential health and environmental effects should be considered. On the other hand, the dimensional stability of the wood is improved through the use of heat treatments. The use of nanometric composites for wood protection is a very promising technique that is under increasing development. However, it is a technology that requires special care because the nanomaterials must be toxic to the agents causing biodeterioration, but harmless or less hazardous to humans and the environment.

Downloads

Download data is not yet available.

References

Acosta-Acosta, R., J. A. Montoya-Arango and E. Joma-da-Silva. 2021. Technologies applied to wood heat treatments, a review. Scientia et Technica 26(2):127-136. Doi: 10.22517/23447214.22641. DOI: https://doi.org/10.22517/23447214.22641

Asociación Española de Normalización. 2017. UNE-EN 350:2016 Durabilidad de la madera y de los productos derivados de la madera. Ensayos y clasificación de la resistencia a los agentes biológicos de la madera y de los productos derivados de la madera. Asociación Española de Normalización. Madrid, MD, España. 60 p.

Barua, S. K., P. Lehtonen and T. Pahkasalo. 2014. Plantation vision: Potentials, challenges and policy options for global industrial forest plantation development. International Forestry Review 16(2):117-127. Doi: 10.1505/146554814811724801. DOI: https://doi.org/10.1505/146554814811724801

Bi, W., H. Li, D. Hui, M. Gaff, … and M. Ashraf. 2021. Effects of chemical modification and nanotechnology on wood properties. Nanotechnology Reviews 10(1):978-1008. Doi: 10.1515/ntrev-2021-0065. DOI: https://doi.org/10.1515/ntrev-2021-0065

Broda, M. 2020. Natural compounds for wood protection against fungi—A review. Molecules 25(15):1-24. Doi: 10.3390/molecules25153538. DOI: https://doi.org/10.3390/molecules25153538

Candelier, K., M.-F. Thevenon, A. Petrissans, S. Dumarcay, P. Gerardin and M. Petrissans. 2016. Control of wood thermal treatment and its effects on decay resistance: a review. Annals of Forest Science 73:571-583. Doi: 10.1007/s13595-016-0541-x. DOI: https://doi.org/10.1007/s13595-016-0541-x

Cesprini, E., R. Baccini, T. Urso, M. Zanetti and G. Tondi. 2022. Quebracho-based wood preservatives: Effect of concentration and hardener on timber properties. Coatings 12(5):568. Doi: 10.3390/coatings12050568. DOI: https://doi.org/10.3390/coatings12050568

Chen, C., Y. Kuang, S. Zhu, I. Burgert, … and L. Hu. 2020. Structure–property–function relationships of natural and engineered wood. Nature Reviews Materials 5:642-666. Doi: 10.1038/s41578-020-0195-z. DOI: https://doi.org/10.1038/s41578-020-0195-z

De Avila D., R., R. Beltrame and D. A. Gatto. 2019. Discolouration of heat-treated fast-growing Eucalyptus wood exposed to natural weathering. Cellulose Chemistry and Technology 53(7-8):635-641. Doi: 10.35812/CelluloseChemTechnol.2019.53.62. DOI: https://doi.org/10.35812/CelluloseChemTechnol.2019.53.62

Dong, Y., Y. Qin, K. Wang, Y. Yan, … and S. Zhang. 2016. Assessment of the performance of furfurylated wood and acetylated wood: Comparison among four fast-growing wood species. BioResources 11(2):3679-3690. Doi: 10.15376/biores.11.2.3679-3690. DOI: https://doi.org/10.15376/biores.11.2.3679-3690

Ella N., L.-F., C. S. A. Bopenga B., F. E. Ngohang, L. E. Mengome, S. Aboughe A. and P. Edou E. 2022. Phytochemical and anti-termite efficiency study of Guibourtia tessmanii (harms). Léonard (Kévazingo) bark extracts from Gabon. Journal of the Korean Wood Science and Technology 50(2):113-125. Doi: 10.5658/WOOD.2022.50.2.113. DOI: https://doi.org/10.5658/WOOD.2022.50.2.113

Food and Agriculture Organization (FAO). 2022. Forestry Production and Trade. https://www.fao.org/faostat/en/#data/FO. (10 de abril de 2023).

Gérardin, P. 2016. New alternatives for wood preservation based on thermal and chemical modification of wood—A review. Annals of Forest Science 73:559-570. Doi: 10.1007/s13595-015-0531-4. DOI: https://doi.org/10.1007/s13595-015-0531-4

Goodell, B., J. E. Winandy and J. J. Morrell. 2020. Fungal degradation of wood: Emerging data, new insights and changing perceptions. Coatings 10(12):1-19. Doi: 10.3390/coatings10121210. DOI: https://doi.org/10.3390/coatings10121210

Gu, L., T. Ding and N. Jiang. 2019. Development of wood heat treatment research and industrialization. Journal of Forestry Engineering 4(4):1-11. Doi: 10.13360/j.issn.2096-1359.2019.04.001.

Hill, C., M. Altgen and L. Rautkari. 2021. Thermal modification of wood—a review: chemical changes and hygroscopicity. Journal of Materials Science 56:6581-6614. Doi: 10.1007/s10853-020-05722-z. DOI: https://doi.org/10.1007/s10853-020-05722-z

Jasmani, L., R. Rusli, T. Khadiran, R. Jalil and S. Adnan. 2020. Application of nanotechnology in wood-based products industry: A review. Nanoscale Research Letters 15:207. Doi: 10.1186/s11671-020-03438-2. DOI: https://doi.org/10.1186/s11671-020-03438-2

Jebrane, M., M. Pockrandt, I. Cuccui, O. Allegretti, E. Uetimane and N. Terziev. 2018. Comparative study of two softwood species industrially modified by Thermowood® and Thermo-Vacuum process. BioResources 13(1):715-728. Doi: 10.15376/biores.13.1.715-728. DOI: https://doi.org/10.15376/biores.13.1.715-728

Khademibami, L. and G. S. Bobadilha. 2022. Recent developments studies on wood protection research in academia: A review. Frontiers in Forests and Global Change 5:1-18. Doi: 10.3389/ffgc.2022.793177. DOI: https://doi.org/10.3389/ffgc.2022.793177

Lisuzzo, L., T. Hueckel, G. Cavallaro, S. Sacanna and G. Lazzara. 2021. Pickering emulsions based on wax and halloysite nanotubes: An ecofriendly protocol for the treatment of archeological woods. ACS Applied Materials & Interfaces 13(1):1651-1661. Doi: 10.1021/acsami.0c20443. DOI: https://doi.org/10.1021/acsami.0c20443

Mantanis, G. I. 2017. Chemical modification of wood by acetylation or furfurylation: A review of the present scaled-up technologies. BioResources 12(2):4478-4489. Doi: 10.15376/biores.12.2.4478-4489. DOI: https://doi.org/10.15376/biores.12.2.Mantanis

Marais, B. N., C. Brischke and H. Militz. 2022. Wood durability in terrestrial and aquatic environments–A review of biotic and abiotic influence factors. Wood Material Science & Engineering 17(2):82-105. Doi: 10.1080/17480272.2020.1779810. DOI: https://doi.org/10.1080/17480272.2020.1779810

Martha, R., M. Mubarok, I. Batubara, I. S. Rahayu, … and P. Gérardin. 2021. Effect of furfurylation treatment on technological properties of short rotation teak wood. Journal of Materials Research and Technology 12:1689-1699. Doi: 10.1016/j.jmrt.2021.03.092. DOI: https://doi.org/10.1016/j.jmrt.2021.03.092

Martínez-Abad, A., N. Giummarella, M. Lawoko and F. Vilaplana. 2018. Differences in extractability under subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods. Green Chemistry 20(11):2534-2546. Doi: 10.1039/c8gc00385h. DOI: https://doi.org/10.1039/C8GC00385H

Martins, C., P. Santos and A. M. P. G. Dias. 2019. Portuguese hardwoods: an overview of its potential for construction purposes. In: van de Kuilen, J.-W. and W. Gard (Edits.). 7th International Scientific Conference on Hardwood Processing. Delft University of Technology. Delft, ZH, The Netherlands. pp. 286-294.

McKinley, P., A. Sinha and F. A. Kamke. 2019. Understanding the effect of weathering on adhesive bonds for wood composites using digital image correlation (DIC). Holzforschung: International Journal of the Biology, Chemistry, Physics, & Technology of Wood 73(2):155. Doi: 10.1515/hf-2018-0024. DOI: https://doi.org/10.1515/hf-2018-0024

Ormondroyd, G., M. Spear and S. Curling. 2015. Modified wood: review of efficacy and service life testing. Proceedings of the Institution of Civil Engineers-Construction Materials 168(4):187-203. Doi: 10.1680/coma.14.00072. DOI: https://doi.org/10.1680/coma.14.00072

Pacheco-Torgal, F., M. V. Diamanti, A. Nazari, C. G. Granqvist, A. Pruna and S. Amirkhanian (Edits.). 2019. Nanotechnology in eco-efficient Construction: Materials, processes and applications. Elsevier. Duxford, Cambs., United Kingdom. 876 p.

Papadopoulos, A. N., D. N. Bikiaris, A. C. Mitropoulos and G. Z. Kyzas. 2019. Nanomaterials and chemical modifications for enhanced key wood properties: A review. Nanomaterials 9:607. Doi: 10.3390/nano9040607. DOI: https://doi.org/10.3390/nano9040607

Peraza S., F. 2002. Protección preventiva de la madera. Asociación de Investigación Técnica de las Industrias de la Madera, AITIM. Madrid, Mad., España. 437 p.

Pockrandt, M., M. Jebrane, I. Cuccui, O. Allegretti, E. Uetimane and N. Terziev. 2018. Industrial Thermowood® and Termovuoto thermal modification of two hardwoods from Mozambique. Holzforschung: International Journal of the Biology, Chemistry, Physics, & Technology of Wood 72(8):701-709. Doi: 10.1515/hf-2017-0153. DOI: https://doi.org/10.1515/hf-2017-0153

Reinprecht, L. 2016. Wood deterioration, protection and maintenance. Wiley Blackwell. Oxford, Oxon, United Kingdom. 384 p. DOI: https://doi.org/10.1002/9781119106500

Rowell, R. M. 2020. Innovation in wood preservation. Polymers 12(7):1-7. Doi: 10.3390/polym12071511. DOI: https://doi.org/10.3390/polym12071511

Rust, M. K. and N.-Y. Su. 2012. Managing social insects of urban importance. Annual Review of Entomology 57:355-375. Doi: 10.1146/annurev-ento-120710-100634. DOI: https://doi.org/10.1146/annurev-ento-120710-100634

Sandberg, D., A. Kutnar and G. Mantanis. 2017. Wood modification technologies-a review. iForest-Biogeosciences and Forestry 10(6):895-908. Doi: 10.3832/ifor2380-010. DOI: https://doi.org/10.3832/ifor2380-010

Schardosin, F. Z., S. Nisgoski, P. H. G. Cademartori, S. R. Morrone and G. I. B. Muniz. 2020. Comparison of the effects of acetylation and paraffin emulsion impregnation in Pinus caribeae. Journal of Tropical Forest Science 32(3):237-245. Doi: 10.26525/jtfs2020.32.3.237. DOI: https://doi.org/10.26525/jtfs2020.32.3.237

Stefanowski, B. K., M. J. Spear and A. Pitman. 2018. Review of the use of PF and related resins for modification of solid wood. Timber 2018:165-179. https://research.bangor.ac.uk/portal/files/20769793/Stefanowski_Review.pdf. (15 de abril de 2023).

Tarmian, A., I. Z. Tajrishi, R. Oladi and D. Efhamisisi. 2020. Treatability of wood for pressure treatment processes: a literature review. European Journal of Wood and Wood Products 78(2):635-660. Doi: 10.1007/s00107-020-01541-w. DOI: https://doi.org/10.1007/s00107-020-01541-w

Teacă, C.-A., D. Roşu, F. Mustaţă, T. Rusu, … and C.-D. Varganici. 2019. Natural bio-based products for wood coating and protection against degradation: A review. BioResources 14(2):4873-4901. Doi: 10.15376/BIORES.14.2.TEACA. DOI: https://doi.org/10.15376/biores.14.2.Teaca

Teng, T.-J., M. N. M. Arip, K. Sudesh, A. Nemoikina, … and H.-L. Lee. 2018. Conventional technology and nanotechnology in wood preservation: A review. BioResources 13(4):9220-9252. Doi: 10.15376/biores.13.4.Teng. DOI: https://doi.org/10.15376/biores.13.4.Teng

Wang, D., Q. Ling, Y. Nie, Y. Zhang, … and F. Sun. 2021. In-situ cross-linking of waterborne epoxy resin inside wood for enhancing its dimensional stability, thermal stability, and decay resistance. ACS Applied Polymer Materials 3(12):6265-6273. Doi: 10.1021/acsapm.1c01070. DOI: https://doi.org/10.1021/acsapm.1c01070

Woźniak, M. 2022. Antifungal agents in wood protection—A review. Molecules 27(19):6392. Doi: 10.3390/molecules27196392. DOI: https://doi.org/10.3390/molecules27196392

Xie, Y., Q. Fu, Q. Wang, Z. Xiao and H. Militz. 2013. Effects of chemical modification on the mechanical properties of wood. European Journal of Wood and Wood Products 71:401-416. Doi: 10.1007/s00107-013-0693-4. DOI: https://doi.org/10.1007/s00107-013-0693-4

Xu, E., D. Wang and L. Lin. 2020. Chemical structure and mechanical properties of wood cell walls treated with acid and alkali solution. Forests 11:1-11. Doi: 10.3390/f11010087. DOI: https://doi.org/10.3390/f11010087

Yang, T., C. Mei, E. Ma and J. Cao. 2022. Effects of acetylation on moisture sorption of wood under cyclically changing conditions of relative humidity. European Journal of Wood and Wood Products 81(4):1-13. Doi: 10.1007/s00107-022-01903-6. DOI: https://doi.org/10.1007/s00107-022-01903-6

Published

2024-06-27

How to Cite

Núñez Retana, Víctor Daniel, Marco Aurelio González Tagle, Humberto González Rodríguez, María Inés Yáñez Díaz, and Wibke Himmelsbach. 2024. “Prominent Wood Protection Methods”. Revista Mexicana De Ciencias Forestales 15 (84). México, ME. https://doi.org/10.29298/rmcf.v15i84.1441.

Issue

Section

Review article