Phenology of reproductive structures of Pseudotsuga menziesii (Mirb.) Franco

Authors

  • Sara Irene Velasco Hernández Universidad Autónoma Chapingo
  • Liliana Muñoz Gutiérrez Instituto Nacional de Investigaciones Forestales, Agrícolas Y Pecuarias
  • J. Jesús Vargas Hernández Colegio de Postgraduados, Campus Montecillo, Postgrado Forestal. México.
  • Mario Castelán Lorenzo Universidad Autónoma Chapingo

DOI:

https://doi.org/10.29298/rmcf.v14i80.1395

Keywords:

Ácido giberélico, dispersión de polen, inducción floral, manejo de semillas, receptividad femenina, sincronización fenológica

Abstract

Determining the beginning, the end, and the time length of each reproductive stage in ovule receptivity as well as in pollen dispersal allows to generate information for a genetic improvement program. The general goal was to determine the period for the receptivity of female strobili and pollen dispersal on a young tree plantation of Pseudotsuga menziesii treated with gibberellic acid (GA 4/7 and GA3) to promote flowering. Twelve trees with reproductive structures were monitored; three branches with female strobili and three branches with male structures were marked in each tree. The initial and end dates and time length of each of the phenological stages of flowering were registered and determined with the SYNCHRO macro using SAS software. The receptivity period of female strobili lasted on average 14 days, while pollen dispersal lasted between five and six days. The female receptivity periods and pollen dispersal showed high synchronization (P=0.60 and 0.64), while the correlation coefficients between phenological events are high and positive (r=0.87), in addition to being significant values (p≤0.001). Thus, the phenological events of pollen dispersal and female receptivity are highly synchronized and are not independent, so there is the probability of crossing between the trees.

Downloads

Download data is not yet available.

References

AccuWeather. 2022. Amecameca de Juárez, México. https://www.accuweather.com/es/mx/amecameca-de-ju%C3%A1rez/233924/january-weather/233924?year=2021. (28 de mayo de 2022).

Aderkas, P., L. Kong, S. Abrams, I. Zaharia, S. Owens and B. Porter. 2004. Flower induction methods for lodgepole pine and Douglas-fir. Centre for Forest Biology and University of Victoria. Victoria, BC, Canada. 59 p.

Alizoti, P. G., K. Kilimis and P. Gallios. 2010. Temporal and spatial variation on flowering among Pinus nigra Arn. clones under changing climatic conditions. Forest Ecology and Management 259(4):786-797 Doi: 10.1016/j.foreco.2009.06.029. DOI: https://doi.org/10.1016/j.foreco.2009.06.029

Askew, G. R. 1988. Estimation of gamete pool compositions in clonal seed orchards. Silvae Genetica 37(5-6):227-232. https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1988/Vol._37_Heft_5-6/37_5-6_227.pdf. (20 de junio de 2022).

Barner, H. and H. Christiansen. 1962. The formation of pollen, the pollination mechanism, and the determination of the most favorable time for controlled pollination in Pseudotsuga menziesii. Silvae Genetica 11:89-102. https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1962/Vol._11_Heft_4/11_4__89.pdf. (20 de junio de 2022).

Burczyk, J. and W. Chalupka. 1997. Flowering and cone production variability and its effects on parental balance in a Scots pine clonal seed orchard. Annals of Forest Science 54(2):129-144. Doi: 10.1051/forest:19970201. DOI: https://doi.org/10.1051/forest:19970201

Cherry, M. L., T. S. Anekonda, M. J. Albrecht and G. T. Howe. 2007. Flower stimulation in young miniaturized seed orchards of Douglas-fir (Pseudotsuga menziesii). Canadian Journal of Forest Research 37(1):1-10. Doi: 10.1139/x06-199. DOI: https://doi.org/10.1139/x06-199

Codesido, V., E. Merlo and J. Fernández-López. 2005. Variation in reproductive phenology in a Pinus radiata D. Don seed orchard in Northern Spain. Silvae Genetica 54(4):246-256. Doi: 10.1515/sg-2005-0035. DOI: https://doi.org/10.1515/sg-2005-0035

de Winter, J. C. F., S. D. Gosling and J. Potter. 2016. Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. Psychological Methods 21(3):273-290. Doi: 10.1037/met0000079. DOI: https://doi.org/10.1037/met0000079

Debreczy, Z. and I. Rácz. 1995. New species and varieties of conifers from México. Phytologia 78:217-243. Doi: 10.5962/bhl.part.11916. DOI: https://doi.org/10.5962/bhl.part.11916

Del Castillo, R. F., J. A. Pérez de la Rosa, G. Vargas A. y R. Rivera G. 2004. Coníferas. In: García-Mendoza, A. J., M. de J. Ordóñez D. y M. Briones-Salas (Coords.). Biodiversidad de Oaxaca. Instituto de Biología Universidad Nacional Autónoma de México (UNAM), Fondo Oaxaqueño para la Conservación de la Naturaleza y World Wildlife Fund. Coyoacán, México D. F., México. pp. 141-158.

Domínguez Á., F. A., J. J. Vargas H., J. López U., P. Ramírez V. y E. Guízar N. 2004. Aspectos ecológicos de Pseudotsuga menziesii en el ejido La Barranca, Pinal de Amoles, Querétaro. Anales del Instituto de Biología Serie Botánica 75(2):191-203. https://www.redalyc.org/pdf/400/40075202.pdf. (26 de mayo de 2022).

Ebell, L. F. and R. L. Schmidt. 1964. Meteorological factors affecting conifer pollen dispersal on Vancouver Island. Government of Canada, Department of Forestry, Forest Entomology and Pathology Branch. Ottawa, ON, Canada. 34 p.

El-Kassaby, Y. A. 1989. Genetics of Douglas-fir seed orchards: Expectations and realities. In: Southern Forest Tree Improvement Conference, Westvaco Corporation and Clemson University. 20th Southern Forest Tree Improvement Conference. Charleston, SC, United States of America. pp. 87-109. https://rngr.net/publications/tree-improvement-proceedings/southern/1989/genetics-of-douglas-fir-seed-orchards-expectations-and-realities/?searchterm=None. (30 de octubre de 2022).

El-Kassaby, Y. A., A. M. K. Fashler and O. Sziklai. 1984. Reproductive phenology and its impact on genetically improved seed production in a Douglas-fir seed orchard. Silvae Genetica 33(4-5):120-125. https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1984/Vol._33_Heft_4-5/33_4-5_120.pdf. (30 de octubre de 2022).

El-Kassaby, Y. A., K. Ritland, A. M. K. Fashler and W. J. B. Devitt. 1988. The role of reproductive phenology upon mating system of a Douglas fir seed orchard. Silvae Genetica 37(2):76-82. https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1988/Vol._37_Heft_2/37_2_76.pdf. (30 de octubre de 2022).

Erickson, V. J. and W. T. Adams. 1989. Mating success in a coastal Douglas-fir seed orchard as affected by distance and floral phenology. Canadian Journal of Forest Research 19(10):1248-1255. Doi: 10.1139/x89-190. DOI: https://doi.org/10.1139/x89-190

Farjon, A. 1990. Pinaceae: Drawings and descriptions of the genera Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. Koeltz Scientific Books. Königstein, HE, Germany. 330 p.

Greenwood, M. S. 1987. Rejuvenation of forest trees. Plant Growth Regulation 6(1):1-12. Doi: 10.1007/BF00043947. DOI: https://doi.org/10.1007/BF00043947

Griffin, A. R. 1984. Clonal variation in radiata pine seed orchards. II: Flowering phenology. Australian Forest Research 14(4):271-281. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9264944. (21 de mayo de 2023).

Hermann, R. K. and D. P. Lavender. 1999. Douglas-fir planted forest. New Forests 17:53-70. Doi: 10.1023/A:1006581028080. DOI: https://doi.org/10.1007/978-94-017-2689-4_5

Hernández Z., O., J. López U., J. J. Vargas H. y M. Jiménez C. 2016. Variación clonal de la fenología reproductiva en un huerto semillero de Pinus patula. Bosque 37(2):255-264. Doi: 10.4067/S0717-92002016000200004. DOI: https://doi.org/10.4067/S0717-92002016000200004

Huusko, A. and S. Hicks. 2009. Conifer pollen abundance provides a proxy for summer temperatura: evidence from the latitudinal forest limit in Finland. Journal of Quaternary Science 24(5):522-528. Doi: 10.1002/jqs.1250. DOI: https://doi.org/10.1002/jqs.1250

Kang, K. S., D. Lindgren and T. J. Mullin. 2001. Prediction of genetic gain and gene diversity in seed orchards crops under alternative management strategies. Theoretical and Applied Genetics 103(6):1099-1107. Doi: 10.1007/s001220100700. DOI: https://doi.org/10.1007/s001220100700

Matziris, D. I. 1994. Genetic variation in the phenology of flowering in black pine. Silvae Genetica 43(5-6):321-328. https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1994/Vol._43_Heft_5-6/43_5-6_321.pdf. (30 de octubre de 2022).

Muñoz-Gutiérrez, L., J. J. Vargas-Hernández, J. López-Upton y N. Gutiérrez-Rangel. 2010. Inducción de estructuras reproductivas en Pseudotsuga menziesii. Agrociencia 44(7):435-847. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952010000700009&lng=es&tlng=es. (21 de mayo de 2022).

Muñoz-Gutiérrez, L., J. J. Vargas-Hernández, J. López-Upton, C. Ramírez-Herrera, M. Jiménez-Casas and A. Aldrete. 2019. Variation in reproductive phenology in a Pinus patula seed orchard and risk of genetic contamination from nearby natural stands. New Forests 50(6):1027-1041. Doi: 10.1007/s11056-019-09712-1. DOI: https://doi.org/10.1007/s11056-019-09712-1

Owens, J. N., L. M. Chandler, J. S. Bennett and T. J. Crowder. 2001. Cone enhancement in Abies amabilis using GA4/7, fertilizer, girdling and tenting. Forest Ecology and Management 154(1-2):227-236. Doi: 10.1016/S0378-1127(00)00629-0. DOI: https://doi.org/10.1016/S0378-1127(00)00629-0

Owens, J. N., S. J. Simpson and M. Molder. 1981. The pollination mechanism and the optimal time of pollination in Douglas-fir (Pseudotsuga menziesii). Canadian Journal of Forest Research 11(1):36-50. Doi: 10.1139/x81-006. DOI: https://doi.org/10.1139/x81-006

Pulkkinen, P. 1994. Aerobiology of pine pollen: dispersal of pollen from non-uniform sources and impact on Scots pine seed orchard. Reports from the foundation for forest tree breeding 8:1-23. https://belinra.inrae.fr/index.php?lvl=notice_display&id=258636. (21 de mayo de 2022).

Ross, S. D. 1983. Enhancement of shoot elongation in Douglas-fir by gibberellins A4/7 and its relation to the hormonal promotion of flowering. Canadian Journal of Forest Research 13(5):986-994. Doi: 10.1139/x83-131. DOI: https://doi.org/10.1139/x83-131

Ross, S. D. and R. C. Bower. 1989. Cost-effective promotion of flowering in a Douglas-fir seed orchard by girdling and pulsed stem injection of Gibberellin A4/7. Silvae Genetica 38(5-6):189-195. https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1989/Vol._38_Heft_5-6/38_5-6_189.pdf. (30 de mayo de 2022).

Ruiz-Farfán, D. de G., J. López-Upton, C. Ramírez-Herrera y D. A. Rodríguez-Trejo. 2015. Fenología reproductiva en un ensayo de Progenies de Pinus greggii var. australis. Revista Fitotecnia Mexicana 38(3):285-296. Doi: 10.35196/rfm.2015.3.285. DOI: https://doi.org/10.35196/rfm.2015.3.285

Rzedowski, J. 1978. Vegetación de México. Limusa S. A. Tlalpan, México D. F., México. 432 p.

Santuario Bosque Esmeralda (SBE). 2020. Bosque Esmeralda: Nuestra historia. https://bosqueesmeralda.com.mx/nuestra_historia.php#:~:text=Se%20encuentra%20en%20el%20%C3%A1rea,y%20generalmente%20nevadas%20en%20invierno. (28 de mayo de 2022).

Sarvas, R. 1962. Investigation on the flowering and seed crop in Pinus sylvestris. Valtion painatuskeskus. Helsinki, HEL, Finland. 198 p.

Stadistical Analysis Software (SAS). 2013. User’s Guide Statistics Version 9.4. SAS Institute Inc. Cary, NC, United States of America. 5136 p.

Vargas-Hernández, J. J. and J. I. Vargas-Abonce. 2016. Effect of gibberellin acid (GA4/7) and partial stem girdling on induction o reproductive structures in Pinus patula. Forest Systems 25(2):e063. Doi: 10.5424/fs/2016252-09254. DOI: https://doi.org/10.5424/fs/2016252-09254

Villagómez L., M. A. y M. Á. Bello G. 2015. Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco: nuevo registro para Guanajuato. Revista Mexicana de Ciencias Forestales 6(30):66-73. Doi: 10.29298/rmcf.v6i30.208. DOI: https://doi.org/10.29298/rmcf.v6i30.208

Webber, J. 2004. Physiology of sexual reproduction in trees. In: Evans, J., J. Burley and J. A. Youngquist (Edits.). Encyclopedia of Forest Sciences. Elsevier. Victoria, BC, Canada. pp. 1639-1644. DOI: https://doi.org/10.1016/B0-12-145160-7/00107-1

Webber, J. E. and R. A. Painter. 1996. Douglas-fir Pollen Management Manual. British Columbia and Ministry of Forests Research Program. Victoria, BC, Canada. 91 p. https://www.for.gov.bc.ca/hfd/pubs/docs/wp/wp02.pdf. (16 de mayo de 2022).

Zas A., R., E. Merlo and J. Fernández L. 2003. SYNCHRO: A SAS program for analysing the floral phenological synchronization in seed orchards. Silvae Genetica 52(5-6):212-215. http://hdl.handle.net/10261/101387. (16 de mayo de 2022).

Published

2023-10-31

How to Cite

Velasco Hernández, Sara Irene, Liliana Muñoz Gutiérrez, J. Jesús Vargas Hernández, and Mario Castelán Lorenzo. 2023. “Phenology of Reproductive Structures of Pseudotsuga Menziesii (Mirb.) Franco”. Revista Mexicana De Ciencias Forestales 14 (80). México, ME:80-104. https://doi.org/10.29298/rmcf.v14i80.1395.

Issue

Section

Scientific article