Seed quality and plant growth in populations and altitudes of Pinus hartwegii Lindl.

Authors

DOI:

https://doi.org/10.29298/rmcf.v14i75.1297

Keywords:

Estado cespitoso, Alta Montaña, caracteres adaptativos, gradiente altitudinal, parámetros germinativos, reproducción

Abstract

Reproduction and growth of high mountain species adapted to low temperatures could be affected by global warming, particularly at marginal altitudes where stress is more intense. This study evaluated seed quality and initial growth in various altitudinal gradients of three Pinus hartwegii populations (two in the State of Mexico and one in Veracruz State); seeds were collected between 3 400 and 4 100 masl. The experimental design was completely randomized and data on seed germination, cespitose stage breakage, and plant growth were recorded. Seed germination capacity was 87 %, with a peak value of 3.2 and germination of 10.9, but with significant variation among populations and gradients. The lowest germination capacity (50 %) was obtained with seeds from the highest altitudinal gradient (4 100 m). The breakage of the cespitose stage varied according to population and altitude. Regarding the seedlings from Veracruz, 75 % of them broke the cespitose stage at five months of age, in contrast with those from the State of Mexico, where the percentage was below 35 %. Regarding altitude, the plants from the highest interval prolonged the break of the cespitose stage for more than two months, which influenced the low initial growth of the plants. This indicates that the 4 000 m population may be in decline, unlike the other altitudinal gradients, which exhibited excellent seed quality and plant growth.

Downloads

Download data is not yet available.

References

Aguilar, R., E. J. Cristóbal-Pérez, F. J. Balvino-Olvera, M. de J. Aguilar-Aguilar, … and M. Quesada. 2019. Habitat fragmentation reduces plant progeny quality: a global synthesis. Ecology Letters 22(7):1163-1173. Doi: 10.1111/ele.13272. DOI: https://doi.org/10.1111/ele.13272

Andrade-Gómez, K. A., C. Ramírez-Herrera, J. López-Upton, M. Jiménez-Casas y R. Lobato-Ortiz. 2021. Indicadores reproductivos en dos poblaciones naturales de Pinus hartwegii Lindl. Revista Fitotecnia Mexicana 44(2):183-189. https://revistafitotecniamexicana.org/documentos/44-2/6a.pdf. (25 de noviembre de 2021). DOI: https://doi.org/10.35196/rfm.2021.2.183

Astudillo-Sánchez, C. C., J. Villanueva-Díaz, A. R. Endara-Agramont, G. E. Nava-Bernal y M. Á. Gómez-Albores. 2017. Influencia climática en el reclutamiento de Pinus hartwegii Lindl. del ecotono bosque-pastizal alpino en Monte Tláloc, México. Agrociencia 51(1):105-118. https://www.scielo.org.mx/pdf/agro/v51n1/1405-3195-agro-51-01-00105.pdf. (8 de febrero de 2022).

Benavides M., H. M., M. O. Gazca G., S. F. López L., F. Camacho M., … y F. Nepamuceno M. 2011. Crecimiento inicial en plántulas de 12 procedencias de Pinus hartwegii Lindl. bajo condiciones de vivero. Revista Mexicana de Ciencias Forestales 2(5):73-90. Doi: 10.29298/rmcf.v2i5.584. DOI: https://doi.org/10.29298/rmcf.v2i5.584

Capilla-Dinorin, E., J. López-Upton, M. Jiménez-Casas y V. Rebolledo-Camacho. 2021. Características reproductivas y calidad de semilla en poblaciones fragmentadas de Pinus chiapensis (Martínez) Andersen. Revista Fitotecnia Mexicana 44(2):211-219. Doi: 10.35196/rfm.2021.2.211. DOI: https://doi.org/10.35196/rfm.2021.2.211

Castilleja S., P., P. Delgado V., C. Sáenz-Romero and Y. Herrerías D. 2016. Reproductive success and inbreeding differ in fragmented populations of Pinus rzedowskii and Pinus ayacahuite var. veitchii, two endemic Mexican pines under threat. Forests 7(8):178-194. Doi: 10.3390/f7080178. DOI: https://doi.org/10.3390/f7080178

Cheng, J., L. Zhao and J. Cheng. 2009. Seed quality and forest regeneration of a 60-year Quercus liaotungensis forest in the Ziwuling region, northwestern China. Journal of Beijing Forestry University 31(2):10-16. http://j.bjfu.edu.cn/en/article/id/8719. (16 de enero de 2022).

Di Pierro, E. A., E. Mosca, S. C. González-Martínez, G. Binelli, D. B. Neale and N. La Porta. 2017. Adaptive variation in natural Alpine populations of Norway spruce (Picea abies [L.] Karst) at regional scale: Landscape features and altitudinal gradient effects. Forest Ecology and Management 405:350-359. Doi: 10.1016/j.foreco.2017.09.045. DOI: https://doi.org/10.1016/j.foreco.2017.09.045

Dixit, A. and T. Kolb. 2020. Variation in seedling budburst phenology and structural traits among southwestern ponderosa pine provenances. Canadian Journal of Forest Research 50(9):872–879. Doi: 10.1139/cjfr-2019-0333. DOI: https://doi.org/10.1139/cjfr-2019-0333

Dixit, A., T. Kolb and O. Burney. 2020. Provenance geographical and climatic characteristics influence budburst phenology of southwestern ponderosa pine seedlings. Forests 11(10):1067-1076. Doi: 10.3390/f11101067. DOI: https://doi.org/10.3390/f11101067

Espinoza-Martínez, L. A., D. A. Rodríguez-Trejo y F. J. Zamudio-Sánchez. 2008. Sinecología del sotobosque de Pinus hartwegii dos y tres años después de quemas prescritas. Agrociencia 42(6):717-730. https://www.scielo.org.mx/pdf/agro/v42n6/v42n6a11.pdf. (25 de octubre de 2021).

Gómez J., D. M., C. Ramírez H., J. Jasso M. y J. López U. 2010. Variación en características reproductivas y germinación de semillas de Pinus leiophylla Schiede ex Schltdl. & Cham. Revista Fitotecnia Mexicana 33(4):297-304. https://www.redalyc.org/articulo.oa?id=61015520003. (16 de enero de 2022). DOI: https://doi.org/10.35196/rfm.2010.4.297

Gómez‐Pineda, E., C. Sáenz‐Romero, J. M. Ortega‐Rodríguez, A. Blanco‐García, … and G. E. Rehfeldt. 2020. Suitable climatic habitat changes for Mexican conifers along altitudinal gradients under climatic change scenarios. Ecological Applications Ecological Society of America 30(2):e02041. Doi: 10.1002/eap.2041. DOI: https://doi.org/10.1002/eap.2041

Harsch, M. A. and M. Y. Bader. 2011. Treeline form -a potential key to understanding treeline dynamics. Global Ecology and Biogeography 20(4):582-596. Doi: 10.1111/j.1466-8238.2010.00622.x. DOI: https://doi.org/10.1111/j.1466-8238.2010.00622.x

Hart, J., K. O'Keefe, S. P. Augustine and K. A. McCulloh. 2020. Physiological responses of germinant Pinus palustris and P. taeda seedlings to water stress and the significance of the grass-stage. Forest Ecology and Management 458(15):1-32. Doi: 10.1016/j.foreco.2019.117647. DOI: https://doi.org/10.1016/j.foreco.2019.117647

Hernández-Anguiano, L. A., J. López-Upton, C. Ramírez-Herrera y A. Romero-Manzanares. 2018. Variación en germinación y vigor de semillas de Pinus cembroides y Pinus orizabensis. Agrociencia 52(8):1161-1178. http://www.scielo.org.mx/pdf/agro/v52n8/1405-3195-agro-52-08-1161-en.pdf. (27 de noviembre de 2021).

Iglesias A., L. G. y Y. Tivo F. 2006. Caracterización morfométrica de la población de Pinus hartwegii Lindl. del Cofre de Perote, Veracruz, México. Ra Ximhai 2(2):449-468. https://www.redalyc.org/articulo.oa?id=46120208. (17 de noviembre de 2021). DOI: https://doi.org/10.35197/rx.02.02.2006.08.li

Jin, S., B. Moule, D. Yu and G. G. Wang. 2019. Fire survival of longleaf pine (Pinus palustris) grass stage seedlings: the role of seedling size, root collar position, and resprouting. Forests 10(12):1-12. Doi: 10.3390/f10121070. DOI: https://doi.org/10.3390/f10121070

Lauder, J. D., E. V. Moran and S. C. Hart. 2019. Fight or flight? Potential tradeoffs between drought defense and reproduction in conifers. Tree Physiology 39(7):1071-1085. Doi: 10.1093/treephys/tpz031. DOI: https://doi.org/10.1093/treephys/tpz031

López-Toledo, L., M. Heredia-Hernández, D. Castellanos-Acuña, A. Blanco-García and C. Sáenz-Romero. 2017. Reproductive investment of Pinus pseudostrobus along an altitudinal gradient in Western Mexico: implications of climate change. New Forests 48:867-881. Doi: 10.1007/s11056-017-9602-8. DOI: https://doi.org/10.1007/s11056-017-9602-8

Manzanilla Q., U., P. Delgado V., J. Hernández R., A. Molina S., J. J. García M. y M. del C. Rocha G. 2019. Similaridad del nicho ecológico de Pinus montezumae y P. pseudostrobus (Pinaceae) en México: implicaciones para la selección de áreas productoras de semillas y de conservación. Acta Botánica Mexicana (126):e1398. Doi: 10.21829/abm126.2019.1398. DOI: https://doi.org/10.21829/abm126.2019.1398

Manzanilla-Quiñones, U., O. A. Aguirre-Calderón, J. Jiménez-Pérez, E. J. Treviño-Garza y J. I. Yerena-Yamallel. 2019. Distribución actual y futura del bosque subalpino de Pinus hartwegii Lindl en el Eje Neovolcánico Transversal. Madera y Bosques 25(2):e2521804. Doi: 10.21829/myb.2019.2521804. DOI: https://doi.org/10.21829/myb.2019.2521804

Navarro, M., G. Febles and R. S. Herrera. 2015. Vigor: essential element for seed quality. Cuban Journal of Agricultural Science 49(4):447-458. https://www.redalyc.org/pdf/1930/193045908003.pdf. (11 de octubre de 2022).

O’Brien, J. J., J. K. Hiers, M. A. Callaham, R. J. Mitchell and S. B. Jack. 2008. Interactions among overstory structure, seedling life-history traits, and fire in frequently burned neotropical pine forests. Ambio 37(7):542-547. Doi: 10.1579/0044-7447-37.7.542. DOI: https://doi.org/10.1579/0044-7447-37.7.542

Ortega-Mata, A., L. Mendizábal-Hernández, J. Alba-Landa y A. Aparicio R. 2003. Germinación y crecimiento inicial de Pinus hartwegii Lindl. de siete poblaciones del Estado de México. Foresta Veracruzana 5(2):29-34. https://www.redalyc.org/pdf/497/49750205.pdf. (9 de diciembre de 2021).

Perry, J. P. 1991. The Pines of Mexico and Central America. Timber Press. Portland, OR, USA. 231 p.

Ricker, M., G. Gutiérrez-García and D. C. Daly. 2007. Modeling long-term tree growth curves in response to warming climate: test cases from a subtropical mountain forest and a tropical rainforest in México. Canadian Journal of Forest Research 37(5):977-989. Doi: 10.1139/X06-304. DOI: https://doi.org/10.1139/X06-304

Robles-Gutiérrez, C. A., A. Velázquez-Martínez, D. A. Rodríguez-Trejo, V. J. Reyes-Hernández y J. D. Etchevers-Barra. 2016. Probability of mortality by fire damage of young Pinus hartwegii Lindl. trees in the Izta-Popo National Park. Revista Chapingo Serie Ciencias Forestales y del Ambiente 22(2):165-178. Doi: 10.5154/r.rchscfa.2015.08.034. DOI: https://doi.org/10.5154/r.rchscfa.2015.08.034

Romanovskii, M. G. and G. P. Morozov. 2019. Cotyledons of seedlings and embryos of conifers. Lesovedenie (6):573-579. Doi: 10.1134/S002411481906007X. DOI: https://doi.org/10.1134/S002411481906007X

SAS Institute. 2003. SAS version 9.0 for Windows. Cary, NC, USA. SAS Institute, Inc.

Tejeda-Landero, V. M., L. R. Sánchez-Velásquez, H. Viveros-Viveros, A. Aparicio-Rentería and R. Flores-Peredo. 2019. Seed bank formation and removal of Pinus hartwegii (pinaceae) seeds along an altitudinal gradient in the Cofre de Perote National Park, Veracruz, Mexico. Botanical Sciences 97(4):623-629. Doi: 10.17129/botsci.2204. DOI: https://doi.org/10.17129/botsci.2204

Trant, A. J., R. G. Jameson and L. Hermanutz. 2018. Variation in reproductive potential across a multi-species treeline. Arctic, Antarctic, and Alpine Research 50(1):e1524191. Doi: 10.1080/15230430.2018.1524191. DOI: https://doi.org/10.1080/15230430.2018.1524191

Viveros-Viveros, H., C. Sáenz-Romero, J. J. Vargas-Hernández, J. López-Upton, G. Ramírez-Valverde y A. Santacruz-Varela. 2009. Altitudinal genetic variation in Pinus hartwegii Lindl. I: Height growth, shoot phenology, and frost damage in seedlings. Forest Ecology and Management 257(3):836-842. Doi: 10.1016/j.foreco.2008.10.021. DOI: https://doi.org/10.1016/j.foreco.2008.10.021

Wang, J., J. Feng, B. Chen, P. Shi, … and L. Ding. 2016. Controls of seed quantity and quality on seedling recruitment of smith fir along altitudinal gradient in southeastern Tibetan Plateau. Journal of Mountain Science 13(5):811-821. Doi: 10.1007/s11629-015-3761-x. DOI: https://doi.org/10.1007/s11629-015-3761-x

Published

2022-12-19

How to Cite

Sánchez Mendoza, José Luis, Marcos Jiménez Casas, Carlos Ramírez herrera, and Héctor Viveros Viveros. 2022. “Seed Quality and Plant Growth in Populations and Altitudes of Pinus Hartwegii Lindl”. Revista Mexicana De Ciencias Forestales 14 (75). México, ME:143-65. https://doi.org/10.29298/rmcf.v14i75.1297.

Issue

Section

Scientific article