Spatio-temporal analysis of wildfires occurrence in the Mexican State of Oaxaca

Authors

DOI:

https://doi.org/10.29298/rmcf.v13i74.1274

Keywords:

agrupamiento espacial, emisión de carbono, observación satelital, pérdida de biodiversidad, zonas de calor

Abstract

In this study, we modelled and analyzed hotspot events recorded by MODIS satellite during the last nineteen years in the Mexican state of Oaxaca using a hierarchical Poisson Bayesian model. Our approach models the number of forest fires in space, time and the interaction of both and considers environmental variables. According to our results, some environmental variables can explain some of the observed Spatio-temporal variations, such as the temperature of the driest quarter, average wind speed, enhanced vegetation index values, and the occurrence of El Niño-Southern Oscillation. The analysis identified two spatial cluster regions: the first covers the Sierra Juárez up to the Isthmus of Tehuantepec, and the second covers the Sierra del Sur. Additionally, the temporal term in our model suggests that the number of events has increased by approximately 42.2 % in the last two decades. In conclusion, our results prompt that forest fires increased not only spatially but also in temporarily. These findings are alarm signals because if the trend continues, hundreds of new hectares of forest and its biodiversity will be threatened in the following decades, affecting too economic activities and people's health living in rural and urban areas of Oaxaca. This study can be a primary analysis in designing more efficient fire management programs to mitigate the impacts of altered fire regimes in Oaxaca.

Downloads

Download data is not yet available.

References

Antonio, X. and E. A. Ellis. 2015. Forest fires and climate correlation in Mexico State: A report based on MODIS. Advances in Remote Sensing 4(4):280-286. Doi: 10.4236/ars.2015.44023. DOI: https://doi.org/10.4236/ars.2015.44023

Avila-Flores, D., M. Pompa-Garcia, X. Antonio-Nemiga, D. A. Rodriguez-Trejo, E. Vargas-Perez and J. Santillan-Perez. 2010. Driving factors for forest fire occurrence in Durango State of Mexico: A geospatial perspective. Chinese Geographical Science 20(6):491–497. Doi: 10.1007/s11769-010-0437-x. DOI: https://doi.org/10.1007/s11769-010-0437-x

Banerjee, S., B. P. Carlin and A. E. Gelfand. 2015. Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC Press. Boca Raton, FL, USA. 584 p. DOI: https://doi.org/10.1201/b17115

Besag, J. 1974. Spatial interaction and the statistical analysis of Lattice Systems. Journal of the Royal Statistical Society, Series B (Methodological) 36(2):192–236. https://www.jstor.org/stable/2984812. (April 2, 2020). DOI: https://doi.org/10.1111/j.2517-6161.1974.tb00999.x

Blangiardo, M. and M. Cameletti. 2015. Spatial and Spatio-temporal Bayesian Models with R–INLA. John Wiley & Sons. Ltd. Chichester, WS, United Kingdom. 320 p. DOI: https://doi.org/10.1002/9781118950203

Boadi, C., S. K. Harvey and A. Gyeke-dako. 2015. Modelling of fire count data: fire disaster risk in Ghana. SpringerPlus 4:794. Doi: 10.1186/s40064-015-1585-3. DOI: https://doi.org/10.1186/s40064-015-1585-3

Bravo-Cabrera, J. L., E. Azpra-Romero, V. Zarraluqui-Such and C. Gay-García. 2017. Effects of El Niño in Mexico during rainy and dry seasons: an extended treatment. Atmósfera 30(3):221-232. Doi: 10.20937/ATM.2017.30.03.03. DOI: https://doi.org/10.20937/ATM.2017.30.03.03

Burton, C., R. A. Betts, C. D. Jones, T. R. Feldpausch, M. Cardoso and L. O. Anderson. 2020. El Niño driven changes in global fire 2015/16. Frontiers in Earth Science 8(199):1-12. Doi: 10.3389/feart.2020.00199. DOI: https://doi.org/10.3389/feart.2020.00199

Chen, L., K. Verrall and S. Tong. 2006. Air particulate pollution due to bushfires and respiratory hospital admissions in Brisbane, Australia. International Journal of Environmental Health Research 16(3):181-191. Doi: 10.1080/09603120600641334. DOI: https://doi.org/10.1080/09603120600641334

Chuvieco, E. 2008. Earth observation of global change: The role of satellite remote sensing in monitoring the global environment. Springer. Dordrecht, ZH, The Netherlands. 223 p. DOI: https://doi.org/10.1007/978-1-4020-6358-9

Comisión Nacional Forestal (Conafor). 2020. Cierre 2019, Reporte de Resultados de Incendios Forestales. Comisión Nacional Forestal y Secretaria de Medio Ambiente y Recursos Naturales (Semarnat). Zapopan, Jal., México. 18 p. https://www.gob.mx/cms/uploads/attachment/file/522446/Cierre_de_la_Temporada_2019.pdf. (May 5, 2021).

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Conabio). 2020. Geoportal de Conabio: Sistema Nacional de Información Sobre Biodiversidad. http://geoportal.conabio.gob.mx/. (February 17, 2021).

Costafreda A., S. 2017. Spatio-temporal analysis of human-caused fire occurrence patterns in Spain. Ph. D. Thesis. Departament d'Enginyeria Agroforestal, Universitat de Lleida. Lleida, CT, Spain. 150 p. http://www.tdx.cat/handle/10803/400822. (March 31, 2020).

Cruz N., X., L. Villers R. and C. Gay G. 2014. Black carbon and organic carbon emissions from wildfires in Mexico. Atmósfera 27(2):165-172. Doi: 10.1016/S0187-6236(14)71107-5. DOI: https://doi.org/10.1016/S0187-6236(14)71107-5

Dennekamp, M. and M. J. Abramson. 2011. The effects of bushfire smoke on respiratory health. Respirology 16(2):198-209. Doi: 10.1111/j.1440-1843.2010.01868.x. DOI: https://doi.org/10.1111/j.1440-1843.2010.01868.x

Doerr, S. H. and C. Santín. 2016. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philosophical Transactions of the Royal Society B Biological Sciences 371(1696):20150345. Doi: 10.1098/rstb.2015.0345. DOI: https://doi.org/10.1098/rstb.2015.0345

Fick, S. E. and R. J. Hijmans. 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. http://www.worldclim.com/version2. (January 1, 2021). DOI: https://doi.org/10.1002/joc.5086

Galván, L. and V. Magaña. 2020. Forest fires in Mexico: an approach to estimate fire probabilities. International Journal of Wildland Fire 29(9):753-763. Doi: 10.1071/WF19057. DOI: https://doi.org/10.1071/WF19057

Hirschberger, P. 2016. Forests ablaze: Causes and effects of global forest fires. WWF Deutschland. Berlin, DM, Germany. 107 p. https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/WWF-Study-Forests-Ablaze.pdf. (May 24, 2022).

Ibarra-Montoya, J. L. y F. M. Huerta-Martínez. 2016. Modelado espacial de incendios: una herramienta predictiva para el Bosque La Primavera, Jalisco México. Revista Ambiente & Água An Interdisciplinary Journal of Applied Science 11(1):35-49. Doi: 10.4136/ambi-agua.1536. DOI: https://doi.org/10.4136/ambi-agua.1536

Miranda, F. 2015. La Vegetación de Chiapas. Tomo 1. Universidad de Ciencias y Artes de Chiapas. Tuxtla Gutiérrez, Chis., México. 156 p.

Monjarás-Vega, N. A., C. I. Briones-Herrera, D. J. Vega-Nieva, E. Calleros-Flores, … and W. M. Jolly. 2020. Predicting forest fire kernel density at multiple scales with geographically weighted regression in Mexico. Science of the Total Environment 718(4):137313. Doi: 10.1016/j.scitotenv.2020.137313. DOI: https://doi.org/10.1016/j.scitotenv.2020.137313

Müller, D., S. Suess, A. A. Hoffmann and G. Buchholz. 2013. The value of satellite-based active fire data for monitoring, reporting and verification of REDD+ in the Lao PDR. Human Ecology 41(1):7–20. Doi: 10.1007/s10745-013-9565-0. DOI: https://doi.org/10.1007/s10745-013-9565-0

Nasi, R., R. Dennis, E. Meijaard, G. Applegate and P. Moore. 2002. Forest fire and biological diversity. Unasylva: An International Journal of Forestry and Forest Industries 53(209):36-40. https://www.researchgate.net/publication/232660153_Forest_fire_and_biological_diversity. (May 24, 2022).

National Aeronautics and Space Administration (NASA). 2020a. Application for Extracting and Exploring Analysis Ready Samples (AppEEARS). https://appeears.earthdatacloud.nasa.gov/. (May 24, 2020).

National Aeronautics and Space Administration (NASA). 2020b. EarthData. https://urs.earthdata.nasa.gov. (November 20, 2020).

National Aeronautics and Space Administration (NASA). 2020c. FIRMS Fire Information for Resource Management System. https://firms.modaps.eosdis.nasa.gov. (December 12, 2020).

Oviedo, G. 2002. The Community Protected Natural Areas in the State of Oaxaca, Mexico. WWF-Gland. Zuerich, ZH, Switzerland. 36 p. http://awsassets.panda.org/downloads/02_community_protected_areas_oaxaca.pdf. (June 12, 2021).

Perez-Verdin, G., M. A. Marquez-Linares and M. Salmeron-Macias. 2014. Spatial heterogeneity of factors influencing forest fires size in northern Mexico. Journal of Forestry Research 25(2):291-300. Doi: 10.1007/s11676-014-0460-3. DOI: https://doi.org/10.1007/s11676-014-0460-3

Pompa-García, M., J. J. Camarero, D. A. Rodríguez-Trejo and D. J. Vega-Nieva. 2018. Drought and spatiotemporal variability of forest fires across Mexico. Chinese Geographical Science 28(1):25–37. Doi: 10.1007/s11769-017-0928-0. DOI: https://doi.org/10.1007/s11769-017-0928-0

R Core Team. 2019. R: A Language and Environment for Statistical Computing (v. 3.6.1). The R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/. (June, 2020).

Rodríguez T., D. A. 2014. Incendios de Vegetación. Su ecología, manejo e historia. Vol. 1. Colegio de Postgraduados. Guadalajara, Jal., México. 891 p.

Rodríguez T., D. A., P. Martínez M. y P. J. Martínez L. 2019. Efectos del fuego en el arbolado de un bosque tropical de pino y en el de una selva baja caducifolia en Villaflores, Chiapas. Ciencia Florestal 29(3):1033–1047. Doi: 10.5902/1980509833952. DOI: https://doi.org/10.5902/1980509833952

Rue, H., S. Martino and N. Chopin. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society. Series B Statistical Methodology 71(2):319-392. Doi: 10.1111/j.1467-9868.2008.00700.x. DOI: https://doi.org/10.1111/j.1467-9868.2008.00700.x

Ruíz-García, V. H., M. A. Borja-de la Rosa, J. D. Gómez-Díaz, C. Asensio-Grima, M. Matías-Ramos and A. I. Monterroso-Rivas. 2022. Forest fires, land use changes and their impact on hydrological balance in temperate forest of Central Mexico. Water 14(3):383-402. Doi: 10.3390/w14030383. DOI: https://doi.org/10.3390/w14030383

Scott, A. C., D. M. J. S. Bowman, W. J. Bond, S. J. Pyne and M. E. Alexander. 2014. Fire on Earth: An Introduction. Wiley Blackwell. Chichester, WS, United Kingdom. 434 p.

Senande-Rivera, M., D. Insua-Costa and G. Miguez-Macho. 2022. Spatial and temporal expansion of global wildland fire activity in response to climate change. Nature Communications 13:1208-1216. Doi: 10.1038/s41467-022-28835-2. DOI: https://doi.org/10.1038/s41467-022-28835-2

Shlisky, A., J. Waugh, P. Gonzales, M. Gonzalez, … and W. Fulks. 2007. Fire, Ecosystems and People: Threats and strategies for global biodiversity conservation. GFI Technical Report 2007-2. The Nature Conservancy. Arlington, VA, USA. 26 p. https://www.conservationgateway.org/Files/Documents/fire_ecosystems_and_people.pdf. (January 17, 2020).

Zúñiga-Vásquez, J. M. and M. Pompa-García. 2019. The occurrence of forest fires in Mexico presents an altitudinal tendency: a geospatial analysis. Natural Hazards 96(1):213-224. Doi: 10.1007/s11069-018-3537-z. DOI: https://doi.org/10.1007/s11069-018-3537-z

Zúñiga-Vásquez, J. M., D. Cisneros-González, M. Pompa-García, D. A. Rodríguez-Trejo and G. Pérez-Verdín. 2017. Spatial modeling of forest fires in Mexico: an integration of two data sources. Bosques 38(3):563-574. Doi: 10.4067/S0717-92002017000300014. DOI: https://doi.org/10.4067/S0717-92002017000300014

Published

2022-10-31

How to Cite

Villar-Hernández, Bartolo de Jesús, Sergio Pérez-Elizalde, Dante Arturo Rodríguez-Trejo, and Paulino Pérez-Rodríguez. 2022. “Spatio-Temporal Analysis of Wildfires Occurrence in the Mexican State of Oaxaca”. Revista Mexicana De Ciencias Forestales 13 (74). México, ME:120-44. https://doi.org/10.29298/rmcf.v13i74.1274.

Issue

Section

Scientific article