Equations to estimate biomass of candelilla (Euphorbia antisyphilitica Zucc) in Chihuahua, Mexico

Authors

DOI:

https://doi.org/10.29298/rmcf.v13i72.1231

Keywords:

Euphorbia antisyphilitica, Candelilla Wax, allometric equations.

Abstract

The candelilla (Euphorbia antisyphilitica Zuuc.) is a shrub that grows naturally in the arid lands of northern México. The candelilla is harvested to extract a wax, which is produced by this species as a response to water stress. To authorize the candelilla harvesting it is mandatory to estimate its biomass using predictive equations. The aim of this study was to generate allometric equations to estimate the biomass of candelilla in Chihuahua, México. A selective and destructive sampling of 198 candelilla plants was carried out. The plants were collected in the natural ecosystems owned by Ejidos, which have authorization for the legal harvesting of candelilla. To fit the best equation, four models and different combinations of variables (predictors vs. plant biomass weight) were tested. All the variables were transformed to a logarithmic scale. The Schumacher Hall and Spurr models were the two selected in their logarithmic form. Both of the selected models used the variables crown diameter and base diameter of the plant, since they were the ones that presented the best statistic fit (R2adj = 0.84), while the RMSE (root mean square error) was less than 0.450, and the parameters of the two equations were highly significant (p<0.0001). The two equations presented normality, homogeneity of variances and nonexistence of collinearity between variables. These equations are reliable to estimate candelilla biomass in the northeast of Chihuahua, México using the criteria and parameters described in this study, and both equations are a useful tool for preparing of technical studies and candelilla management programs in Mexico.

Downloads

Download data is not yet available.

References

Ali, A., M. S. Xu, Y. T. Zhao, Q. Q. Zhang, L. L. Zhou, X. D. Yang and E. R Yan. 2015. Allometric biomass equations for shrub and small tree species in subtropical China. Silva Fennica 49(4):1-10. Doi: 10.14214/sf.1275. DOI: https://doi.org/10.14214/sf.1275

Altanzagas B., Y. Luo, B. Altansukh, C. Dorjsuren, J. Fang and H. Hu. 2019. Allometric Equations for estimating the above-ground biomass of five forest tree species in Khangai, Mongolia. Forests 10(8):661. Doi: 10.3390/f10080661. DOI: https://doi.org/10.3390/f10080661

Aranha, J., T. Enes, A. Calvão and H. Viana. 2020. Shrub biomass estimates in former burnt areas using Sentinel 2 images processing and classification. Forests 11(5):555. Doi: 10.3390/f11050555. DOI: https://doi.org/10.3390/f11050555

Arato, M., S. Speelman and G. Van Huylenbroeck. 2014. The contribution of non-timber forest products towards sustainable rural development: The case of Candelilla wax from the Chihuahuan Desert in Mexico. Natural Resources Forum 38(2):141–153. Doi: 10.1111/1477-8947.12043. DOI: https://doi.org/10.1111/1477-8947.12043

Bañuelos-Revilla, J. E., J. Palacio-Núñez, J. F. Martínez-Montoya, G. Olmos-Oropeza y J. A. Flores-Cano. 2019. Distribución potencial y abundancia de candelilla (Euphorbia antisyphilitica) en el norte de Zacatecas, México. Madera y Bosques 25(1):1-14. Doi: 10.21829/myb.2019.2511657. DOI: https://doi.org/10.21829/myb.2019.2511657

Becerra-López, J. L., R. Rosales-Serna, M. Ehsan, J. S. Becerra-López, A. Czaja, J. L. Estrada-Rodríguez, U. Romero-Méndez, S. Santana-Espinoza, C. M. Reyes-Rodríguez, J. C. Ríos-Saucedo and P. A. Domínguez-Martínez. 2020. Climatic change and habitat availability for three sotol species in Mexico: A vision towards their sustainable use. Sustainability 12(8):3455. Doi: 10.3390/su12083455. DOI: https://doi.org/10.3390/su12083455

Chave, J., C. Andalo, S. Brown, M. A. Cairns, … and T. Yamakura. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145(1):87–99. Doi: 10.1007/s00442-005-0100-x. DOI: https://doi.org/10.1007/s00442-005-0100-x

Chieppa, J., S. A. Power, D. T. Tissue and U. N. Nielsen. 2020. Allometric estimates of aboveground biomass using cover and height are improved by increasing specificity of plant functional groups in Eastern Australian Rangelands. Rangeland Ecology and Management 73(3):375-383. Doi: 10.1016/j.rama.2020.01.009. DOI: https://doi.org/10.1016/j.rama.2020.01.009

Dai, J., H. Liu, Y. Wang, Q. Guo, … and Z. Jiang. 2020. Drought-modulated allometric patterns of trees in semi-arid forests. Communications Biology 3(1):1-8. Doi: 10.1038/s42003-020-01144-4. DOI: https://doi.org/10.1038/s42003-020-01144-4

Daryanto, S., D. J. Eldridge and H. L. Throop. 2013. Managing semi-arid woodlands for carbon storage: Grazing and shrub effects on above and belowground carbon. Agriculture, Ecosystems & Environment 169:1-11. Doi: 10.1016/j.agee.2013.02.001. DOI: https://doi.org/10.1016/j.agee.2013.02.001

Flores del Angel, M. L. 2013. Situación actual de las poblaciones de Candelilla (Euphorbia antisyphilitica Zucc): Inventario, su propagación sexual y asexual en el estado de Coahuila, México. Tesis Doctoral. Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León. San Nicolás de las Garzas, NL, México. 134 p.

Flores-del Angel, M. L., R. Foroughbakhch, A. Rocha-Estrada, M. L. Cárdenas-Ávila, M. A. Guzmán-Lucio, Y. L. Hernández-Aguilar and M. A. Alvarado-Vázquez. 2013. Morphology, viability and germination of candelilla seeds (Euphorbia antisyphilitica Zucc.). Phyton 82:161-167. Doi: 10.32604/phyton.2013.82.161. DOI: https://doi.org/10.32604/phyton.2013.82.161

Flores-Hernández, C. de J., J. Méndez-Gonzalez, F. de J. Sánchez-Pérez, F. M. Méndez-Encina, Ó. M. López-Díaz and P. M. López-Serrano. 2020. Allometric equations for predicting Agave lechuguilla Torr. aboveground biomass in Mexico. Forests 11(7):784. Doi: 10.3390/f11070784. DOI: https://doi.org/10.3390/f11070784

González, M. F. 2012. Las zonas áridas y semiáridas de México y su vegetación. Secretaría de Medio Ambiente y Recursos Naturales (Semarnat) e Instituto Nacional de Ecología (INE). Tlalpan, México D. F., Mexico. 173 p.

Granados-Sánchez, D., A. Sánchez-González, R. L. Granados V. y A. Borja de la R. 2011. Ecología de la vegetación del desierto chihuahuense. Revista Chapingo Serie Ciencias Forestales y del Ambiente 17(Edición especial):111-130. Doi: 10.5154/r.rchscfa.2010.10.102. DOI: https://doi.org/10.5154/r.rchscfa.2010.10.102

Hernández-Ramos, A., A. Cano-Pineda, C. Flores-López, J. Hernández-Ramos, X. García-Cuevas, M. Martínez-Salvador y L. Martínez Á. 2019. Modelos para estimar biomasa de Euphorbia antisyphilitica Zucc. en seis municipios de Coahuila. Madera y Bosques 25(2):1-13. Doi: 10.21829/myb.2019.2521806. DOI: https://doi.org/10.21829/myb.2019.2521806

Islam, R., S. Azad, A. S. Mollick, M. Kamruzzaman and N. I. Khan. 2021. Allometric equations for estimating stem biomass of Artocarpus chaplasha Roxb. in Sylhet hill forest of Bangladesh. Trees, Forests and People 4:100084. Doi: 10.1016/j.tfp.2021.100084. DOI: https://doi.org/10.1016/j.tfp.2021.100084

Kutner, M. H., C. J. Nachtsheim, J. Neter and W. Li. 2005. Applied linear statistical models. McGraw-Hill Irwin. New York, NY, USA. 1396 p.

Luo, Y., X. Wang, Z. Ouyang, F. Lu, L. Feng and J. Tao. 2020. A review of biomass equations for China’s tree species. Earth System Science Data 12(1):21-40. Doi: 10.5194/essd-12-21-2020. DOI: https://doi.org/10.5194/essd-12-21-2020

Mahmood, H., M. R. H. Siddique, L. Costello, L. Birigazzi, … and F. K. Mondol. 2019. Allometric models for estimating biomass, carbon and nutrient stock in the sal zone of Bangladesh. iForest Biogeosciences and Forestry 12(1):69–75. Doi: 10.3832/ifor2758-011. DOI: https://doi.org/10.3832/ifor2758-011

Martínez-Domínguez, A., F. Ruiz-Aquino, W. Santiago-García, P. Antúnez, M. Á. López-López, C. Valenzuela-Encinas and R. Feria-Reyes. 2020. Allometric equations to estimate aboveground and belowground biomass of Pinus patula Schiede ex Schltdl. & Cham. Forest Science and Technology 16(3):161-170. Doi: 10.1080/21580103.2020.1801526. DOI: https://doi.org/10.1080/21580103.2020.1801526

Martínez-Sánchez, J. L., C. Martínez-Garza, L. Cámara and O. Castillo. 2020. Species-specific or generic allometric equations: which option is better when estimating the biomass of Mexican tropical humid forests? Carbon Management 11(3):241–249. Doi: 10.1080/17583004.2020.1738823. DOI: https://doi.org/10.1080/17583004.2020.1738823

Montgomery, D. C., E. A. Peck and G. G. Vining. 2021. Introducction to linear regression analysis. Jhon Wilwey & Sons, Inc. Hoboken, NJ, USA. 704 p.

Moussa, M. and L. Mahamane. 2018. Allometric models for estimating aboveground biomass and carbon in Faidherbia albida and Prosopis africana under agroforestry parklands in drylands of Niger. Journal of Forestry Research 29(6):1703–1717. Doi: 10.1007/s11676-018-0603-z. DOI: https://doi.org/10.1007/s11676-018-0603-z

Muñoz-Ruíz, C. V., S. López-Dáz, F. Covarrubias-Villa, E. Villar-Luna, J. R. Medina-Medrano and L. G. Barriada-Bernal. 2016. Effect of abiotic stress conditions on the wax production in candelilla (Euphorbia antisyphilitica Zucc.). Revista Latinoamerica de Química 44(1):26-33. https://www.researchgate.net/publication/311705358. (1 de octubre de 2021).

Návar, J. 2010. Measurement and assessment methods of forest aboveground biomass: A Literature review and the challenges ahead. In Momba M., N. B. (Ed.) Biomass. Sciyo. Rijeka, Croatia. pp. 27-64. https://www.intechopen.com/chapters/11396. (1 de octubre de 2021).

Návar, J., E. Méndez, A. Nájera, J. Graciano, V. Dale and B. Parresol. 2004. Biomass equations for shrub species of Tamaulipan thornscrub of North-eastern Mexico. Journal of Arid Environments 59(4):657-674. Doi: 10.1016/j.jaridenv.2004.02.010. DOI: https://doi.org/10.1016/j.jaridenv.2004.02.010

Noulèkoun, F., J. B. Naab, J. P. A. Lamers, S. Baumert and A. Khamzina. 2018. Sapling biomass allometry and carbon content in five afforestation species on marginal farmland in semi-arid Benin. New Forests 49(3):363-382. Doi: 10.1007/s11056-017-9624-2. DOI: https://doi.org/10.1007/s11056-017-9624-2

Pando-Moreno, M., O. Eufracio, E. Jurado and E. Estrada. 2004. Post-harvest growth of lechuguilla (Agave lechuguilla Torr., Agavaceae) in northeastern Mexico. Economic Botany 58(1):78–82. Doi: 10.1663/0013-0001(2004)058[0078:PGOLAL]2.0.CO;2. DOI: https://doi.org/10.1663/0013-0001(2004)058[0078:PGOLAL]2.0.CO;2

Picard, N., E. Rutishauser, P. Ploton, A. Ngomanda and M. Henry. 2015. Should tree biomass allometry be restricted to power models? Forest Ecology and Management 353:156-163. Doi: 10.1016/j.foreco.2015.05.035. DOI: https://doi.org/10.1016/j.foreco.2015.05.035

Quiñonez-Barraza, G., G. G. García-Espinoza y O. A. Aguirre-Calderón. 2018. ¿Cómo corregir la heterocedasticidad y autocorrelación de residuales en modelos de ahusamiento y crecimiento en altura? Revista Mexicana de Ciencias Forestales 9(49):28-59. Doi: 10.29298/rmcf.v9i49.151. DOI: https://doi.org/10.29298/rmcf.v9i49.151

R core Team. 2021. The R Project for Statistical Computing. Vienna, Austria. R Foundation for statistical computing. https://www.r-project.org/. (1 de diciembre de 2021).

Rojas M., R., S. Saucedo P., M. A. De León Z., D. Jasso C. y C. N. Aguilar. 2011. Pasado, presente y futuro de la candelilla. Revista Mexicana de Ciencias Forestales 2(6):7-18. Doi: 10.29298/rmcf.v2i6.571. DOI: https://doi.org/10.29298/rmcf.v2i6.571

Sione, S. M. J., H. J. Andrade-Castañeda, S. G. Ledesma, L. J. Rosenberger, J. D. Oszust and M. G. Wilson. 2019. Aerial biomass allometric models for Prosopis affinis Spreng. in native espinal forests of Argentina. Revista Brasileira de Engenharia Agrícola e Ambiental 23(6):467-473. Doi: 10.1590/1807-1929/agriambi.v23n6p467-473. DOI: https://doi.org/10.1590/1807-1929/agriambi.v23n6p467-473

Sprugel, D. G. (1983). Correcting for bias in log-transformed allometric equations. Ecology 64: 209-210. Doi: 10.2307/1937343. DOI: https://doi.org/10.2307/1937343

Vargas-Larreta B., C. A. López-Sánchez, J. J. Corral-Rivas, J. O. López-Martínez, C. G. Aguirre-Calderón and J. G. Álvarez-González. 2017. Allometric equations for estimating biomass and carbon stocks in the temperate forests of North-Western México. Forest 8(8):269. Doi: 10.3390/f8080269. DOI: https://doi.org/10.3390/f8080269

Vargas-Piedra, G., R. D. Valdez-Cepeda, A. López-Santos, A. Flores-Hernández, N. S. Hernández-Quiroz and M. Martínez-Salvador. 2020. Current and future potential distribution of the xerophytic shrub candelilla (Euphorbia antisyphilitica) under two climate change scenarios. Forests 11(5):530. Doi: 10.3390/f11050530. DOI: https://doi.org/10.3390/f11050530

Villa-Castorena, M., E. A. Catalán-Valencia, M. A. Inzunza-Ibarr, M. de L. González-López y J. G. Arreola-Ávila. 2010. Producción de plántulas de candelilla (Euphorbia antisiphyllitica Zucc.) mediante estacas. Revista Chapingo Serie Ciencias Forestales y del Ambiente 16(1):37-47. Doi: 10.5154/r.rchscfa.2009.07.027. DOI: https://doi.org/10.5154/r.rchscfa.2009.07.027

Villavicencio-Gutierrez, E. E., A. Hernández-Ramos, C. N. Aguilar-González y X. García-Cuevas. 2018. Estimación de la biomasa foliar seca de Lippia graveolens Kunth del sureste de Coahuila. Revista Mexicana de Ciencias Forestales 9(45):187-205. Doi: 10.29298/rmcf.v9i45.139. DOI: https://doi.org/10.29298/rmcf.v9i45.139

Villavicencio-Gutierrez, E. E., S. Mendoza-Morales y J. Méndez G. 2020. Modelo para predecir biomasa foliar seca de Litsea parvifolia (Hemsl.) Mez. Revista Mexicana de Ciencias Forestales 11(58):112-133. Doi: 10.29298/rmcf.v11i58.642. DOI: https://doi.org/10.29298/rmcf.v11i58.642

Yao, X., G. Yang, B. Wu, L. Jiang and F. Wang. 2021. Biomass estimation models for six shrub species in hunshandake sandy land in inner Mongolia, Northern China. Forests 12(2):167. Doi: 10.3390/f12020167. DOI: https://doi.org/10.3390/f12020167

Zhang, L., G. Cui, W. Shen and X. Liu. 2016. Cover as a simple predictor of biomass for two shrubs in Tibet. Ecological Indicators 64:266-271. Doi: 10.1016/j.ecolind.2016.01.009. DOI: https://doi.org/10.1016/j.ecolind.2016.01.009

Zhao, H., Z. Li, G. Zhou, Z. Qiu and Z. Wu. 2019. Site-specific allometric models for prediction of above-and belowground biomass of subtropical forests in Guangzhou, southern China. Forests 10(10):862. Doi: 10.3390/f10100862. DOI: https://doi.org/10.3390/f10100862

Published

2022-07-07

How to Cite

Maldonado-Ortíz, Margarito, Pablito Marcelo López Serrano, Ricardo David Valdez-Cepeda, Ricardo Mata-González, Fabián García-González, and Martín Martínez-Salvador. 2022. “Equations to Estimate Biomass of Candelilla (Euphorbia Antisyphilitica Zucc) in Chihuahua, Mexico”. Revista Mexicana De Ciencias Forestales 13 (72). México, ME:173-200. https://doi.org/10.29298/rmcf.v13i72.1231.

Issue

Section

Scientific article