Topics and perspectives of scientific research on genetic improvement of perennial species in INIFAP

Authors

  • Miguel Angel Vallejo Reyna Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales. México
  • José Vidal Cob Uicab Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. CIR-Sureste. Campo Experimental Chetumal. México

DOI:

https://doi.org/10.29298/rmcf.v12iEspecial-1.1089

Keywords:

In vitro tissue culture, forest species, molecular markers, genetic improvement, vegetative propagation, selection

Abstract

The increase in demands for goods and services, the degradation of ecosystems and climate change, compels the scientific community to seek efficient alternatives in the use and management of timber and non-timber forest resources, as well as other perennial plants such as fruit trees. For this reason, investing in the progress of agroforestry systems and the development of agroecology is an indispensable activity. Unlike annual plants in which the main breeding techniques involve hybridization and backcrosses, in species with a long life cycle, other methods are necessary to increase and improve the useful qualities to society. In this way, the benefits that are obtained from these species can be maximized and the ecological and environmental impact minimized. In Mexico traditionally greater importance has been given to agriculture over afforestation and forestry, activities that today are very important to mitigate the effects of climate change and for the conservation of ecosystems. However, some institutions such as INIFAP have made efforts that contribute to the development of the Mexican countryside through the genetic improvement of evergreen plants. This text seeks to highlight some important points regarding the history, techniques and some experiences of INIFAP related to this matter so relevant for the well-being of rural societies and the protection of biodiversity.

Downloads

Download data is not yet available.

References

Abbo, S. and A. Gopher. 2020. Plant domestication in the Neolithic Near East: The humans-plants liaison. Quaternary Science Reviews 242:106412. Doi:10.1016/j.quascirev.2020.106412.

Ahloowalia, B. S. and M. Maluszynski. 2001. Induced mutations - A new paradigm in plant breeding. Euphytica 118:167–173. Doi: 10.1023/A:1004162323428. DOI: https://doi.org/10.1023/A:1004162323428

Arce-Leal, Á. P., R. Bautista, E. A. Rodríguez-Negrete, M. Á. Manzanilla-Ramírez, J. J. Velázquez-Monreal, J. Méndez-Lozano, E. R. Bejarano, A. G. Castillo, M. Gonzalo C. and N. E. Leyva-López. 2020. De novo assembly and functional annotation of Citrus aurantifolia transcriptome from Candidatus Liberibacter asiaticus infected and non-infected trees. Data in Brief 29:105198. Doi: 10.1016/j.dib.2020.105198.

Arenas, S., A. J. Cortés, A. Mastretta-Yanes and J. P. Jaramillo-Correa. 2021. Evaluating the accuracy of genomic prediction for the management and conservation of relictual natural tree populations. Tree Genetics and Genomes 17(1):1–19. Doi:10.1007/s11295-020-01489-1.

Avendaño-Arrazate, C. H. y J. Cueto-Moreno. 2018. “Lacandón”: nuevo clon de cacao criollo (Theobroma cacao L.) mexicano. Agroproductividad 11(9):169–171. Doi: 10.32854/agrop.v11i9.1232.

Bartlett, J. M. S. and D. Stirling. 2003. A short history of the polymerase chain reaction. In: Bartlett, J. M. S. and D. Stirling (eds.). PCR Protocols. Methods in Molecular Biology. Vol 226. Humana Press. Totowa, NJ USA. Doi: 10.1385/1-59259-384-4:3. DOI: https://doi.org/10.1007/978-1-4612-0055-0_1

Burdon, R. D. 1989. Early selection in tree breeding: principles for applying index selection and inferring input parameters. Canadian Journal of Forest Research 19(4):499–504. Doi: 10.1139/x89-076. DOI: https://doi.org/10.1139/x89-076

Callaham, R. Z. 1964. Provenance research: Investigation of genetic diversity associated with geography. Unasylva 18(2–3): 1-12. https://www.fs.fed.us/psw/publications/callaham/psw_1963_callaham001.pdf (28 de febrero de 2021).

Carneiro V., M. L., L. Santini, A. Lima D. and C. de Freitas M. 2016. Microsatellite markers: What they mean and why they are so useful. Genetics and Molecular Biology 39(3):312-328. Doi: 10.1590/1678-4685-GMB-2016-0027. DOI: https://doi.org/10.1590/1678-4685-GMB-2016-0027

Carrillo-Medrano, S. H., M. A. Gutiérrez-Espinoza, M. M. Robles-González y S. Cruz-Izquierdo. 2018. Identificación de híbridos de limón mexicano mediante marcadores moleculares SSR. Revista Mexicana de Ciencias Agrícolas 9(1):11-23. Doi: 10.29312/remexca.v9i1.844. DOI: https://doi.org/10.29312/remexca.v9i1.844

Castillo-Martínez, C. R., F. García-Campusano, M. A. Vallejo-Reyna, I. Reyes-Martínez y E. De la Cruz-Torres. 2018. Mutagénesis de material in vitro de Pseudotsuga menziesii y obtención de líneas mutantes. AgroProductividad 11(12):33–39. Doi: 10.32854/agrop.v11i12.1304.

Cob U., J. V., G. J. Herrera C., X. García C. and B. Rodríguez S. 2020. Morphogenic competence of vegetative buds and its effect in select adult trees cloning. Modern Agricultural Science and Technology 6(1–6):28–32. Doi: 10.15341/mast(2375-9402)/01.06.2020/004.

Comisión Nacional Forestal (Conafor) 2009. Situación actual y perspectivas de las plantaciones forestales comerciales en México. Comisión Nacional Forestal - Colegio de Postgraduados. Montecillo, Texcoco, Edo. de Méx., México. 429 p. http://www.conafor.gob.mx/biblioteca/PFC.pdf (28 de febrero de 2021).

Cortés-Rodríguez, M. A., R. López-Gómez, M. M. Martínez-Pacheco, L. M. Suárez-Rodríguez, A. Hernández-García, R. Salgado-Garciglia, I. Vidales F. and M.E. Ángel P. 2011. In vitro propagation of Mexican race avocado (Persea americana Mill. var. drymifolia). Acta Horticulturae 923:47–52. Doi: 10.17660/ActaHortic.2011.923.5. DOI: https://doi.org/10.17660/ActaHortic.2011.923.5

Curti-Díaz, S. A., C. Hernández-Guerra, y R. X. Loredo-Salazar. 2012. Productividad del limón “persa” injertado en cuatro portainjertos en una huerta comercial de Veracruz, México. Revista Chapingo, Serie Horticultura 18(3):291–305. Doi:10.5154/r.rchsh.2010.11.109. DOI: https://doi.org/10.5154/r.rchsh.2010.11.109

Diaz-Garcia, L., G. Covarrubias-Pazaran, J. Johnson-Cicalese, N. Vorsa and J. Zalapa. 2020. Genotyping-by-Sequencing identifies historical breeding stages of the recently domesticated american cranberry. Frontiers in Plant Science 11:607770. Doi: 10.3389/fpls.2020.607770.

Fan, Y., S. Xin, X. Dai, X. Yang, H. Huang and Y. Hua. 2020. Efficient genome editing of rubber tree (Hevea brasiliensis) protoplasts using CRISPR/Cas9 ribonucleoproteins. Industrial Crops and Products 146:112146. Doi:10.1016/j.indcrop.2020.112146.

Organización de las Naciones Unidas para la Agricultura (FAO). 2012. Situación de los recursos genéticos forestales en México. Informe Final del proyecto TCP/MEX/3301/MEX (4). http://www.fao.org/3/be793s/be793s.pdf (28 de febrero de 2021).

Flores F., C., J. López U. y S. Valencia M. 2014. Manual técnico para el establecimiento de ensayos de procedencias y progenies. Comisión Nacional Forestal. Zapopan, Jal., México. 152 p. https://bit.ly/3AmsE3E (28 de febrero de 2021).

Francia, E., G. Tacconi, C. Crosatti, D. Barabaschi, D. Bulgarelli, E. Dall’Aglio and G. Valè. 2005. Marker assisted selection in crop plants. Plant Cell, Tissue and Organ Culture 82(3):317–342. Doi: 10.1007/s11240-005-2387-z. DOI: https://doi.org/10.1007/s11240-005-2387-z

Gong, X. X., B. Y. Yan, J. Hu, C. P. Yang, Y. J. Li, J. P. Liu and W. B. Liao. 2018. Transcriptome profiling of rubber tree (Hevea brasiliensis) discovers candidate regulators of the cold stress response. Genes and Genomics 40(11): 1181–1197. Doi: 10.1007/s13258-018-0681-5. DOI: https://doi.org/10.1007/s13258-018-0681-5

Harfouche, A., R. Meilan, M. Kirst, M. Morgante, W. Boerjan, M. Sabatti and G. Scarascia M. 2012. Accelerating the domestication of forest trees in a changing world. Trends in Plant Science 17(2):64–72. Doi: 10.1016/j.tplants.2011.11.005. DOI: https://doi.org/10.1016/j.tplants.2011.11.005

Harris, D. R. 1967. New light on plant domestication and the origins of agriculture: A review. Geographical Review 57(1):90-107. Doi: https://doi.org/10.2307/212761. DOI: https://doi.org/10.2307/212761

Isik, F. 2014. Genomic selection in forest tree breeding: The concept and an outlook to the future. New Forests 45:379-401. Doi: 10.1007/s11056-014-9422-z. DOI: https://doi.org/10.1007/s11056-014-9422-z

Libby, W. J., R. F. Stettler and F. W. Seitz. 1969. Forest genetics and forest-tree breeding. Annual Review of Genetics 3(1):469–494. Doi:10.1146/annurev.ge.03.120169.002345. DOI: https://doi.org/10.1146/annurev.ge.03.120169.002345

Libby, W. J. and R. M. Rauter. 1984. Advantages of clonal forestry. The Forestry Chronicle 60(3):145–149. Doi: 10.5558/tfc60145-3. DOI: https://doi.org/10.5558/tfc60145-3

Lynch, M. and B. Walsh. 1998. Genetics and analysis of quantitative traits. Simauer Associates. Sunderland, MA USA. 980 p.

Meyer, R. S., A. E. DuVal and H. R. Jensen. 2012. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytologist 196(1):29–48. Doi: 10.1111/j.1469-8137.2012.04253.x. DOI: https://doi.org/10.1111/j.1469-8137.2012.04253.x

Orozco G., G., R. del Val D., M. González Ch., H. J. Muñoz F., V. M. Coria A. y J. J. García M. 2010. Extracción de ADN y una prueba inicial de primers en Pinus pseudostrobus Lindl. para marcadores AFLP. Foresta Veracruzana 12(2):15–20. http://www.redalyc.org/articulo.oa?id=49719770003 (28 de febrero de 2021).

Ortiz C., E., F. García C., J. M. Hernández C., V. H. Fuentes D., L. E. Valencia G., J. Z. García P. y E. I. Flores H. 2017. Caracterización morfológica y molecular de clones de hule [Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.]. Cenid Comef, INIFAP. Ciudad de México, CDMX, México. Folleto Técnico Núm. 27. 80 p.

Presidencia de la República. 2019. Plan Nacional de Desarrollo 2019-2024. Presidencia de la República. Diario Oficial de la Federación. 12 de junio de 2019. http://www.dof.gob.mx/nota_detalle.php?codigo=5565599&fecha=12/07/2019 (28 de febrero de 2021).

Porth, I. and Y. A. El-Kassaby. 2014. Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity 6(2):283–295. Doi:10.3390/d6020283. DOI: https://doi.org/10.3390/d6020283

Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (Sagarpa). 2017. Historia del Colegio de Postgraduados (Colpos). In: Calzada-Rovirosa, J. E., M. Rocatti-Velázquez y P. Galeana (eds.). Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Secretaría de Cultura, INEHRM. Ciudad de México, CDMX, México. pp. 415–444.

Salazar-García, S., R. Medina-Torres, M. E. Ibarra-Estrada and J. González-Valdivia. 2016. Influence of clonal rootstocks on leaf nutrient concentrations in ‘Hass’avocado grown without irrigation. Revista Chapingo Serie Horticultura 22(3):161–175. Doi:10.5154/r.rchsh.2015.06.013. DOI: https://doi.org/10.5154/r.rchsh.2015.06.013

Sampayo-Maldonado, S., J. López-Upton, V. Sánchez-Monsalvo and M. Jiménez-Casas. 2019. Genetic parameters of growth, and resistance to the shoot borer, in young clones of the tree Cedrela odorata (Meliaceae). Revista de Biologia Tropical 67(3):554–561. Doi: 10.15517/RBT.V67I3.32053.

Sánchez M., V., G. Salazar G., J. Vargas H., J. López U. y J. Jasso M. 2003. Parámetros genéticos y respuesta a la selección en características del crecimiento de Cedrela odorata L. Revista Fitotecnica Mexicana 26(1):19–27. https://www.revistafitotecniamexicana.org/documentos/26-1/3a.pdf (28 de febrero de 2021).

Schmithüsen, F. 2013. Three hundred years of applied sustainability in forestry. Unasylva, 64(240):3–11. http://www.fao.org/3/i3364e/i3364e.pdf (28 de febrero de 2021).

Simon, A. J., S. d’Oelsnitz and A. D. Ellington. 2019. Synthetic evolution. Nature Biotechnology 37:730-743. Doi: 10.1038/s41587-019-0157-4.

Torres, J. 2000. Evaluación genética y económica de dos ensayos de progenie de Pinus radiata D. Don a base de un índice de selección multicriterio. Ciencia Forestal en México 14(1–2):1–7. http://revistacienciasforestales.uchile.cl/1999-2000_vol14-15/n1-2a6.pdf (6 de mayo de 2021).

Urbina H., S. D. 2017. Evolución, situación actual y prospectiva del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). In: Calzada R., J. E., M. Rocatti V. y P. Galeana (eds.). Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Secretaría de Cultura, INEHRM. Ciudad de México, CDMX, México. pp. 535–563.

Valenzuela, C. E., P. Ballesta, S. Ahmar, S. Fiaz, P. Heidari, C. Maldonado and F. Mora P. 2021. Haplotype-and snp-based gwas for growth and wood quality traits in eucalyptus cladocalyx trees under arid conditions. Plants 10(1):1–17. Doi:10.3390/plants10010148.

Vallejo R., M. Á., C. Méndez E. y F. García C. 2019. Germoplasma y Biotecnología Forestales. In: Zamora M., M. C. y M. E. Romero S. (eds.). XXV Aniversario del Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales. Cenid Comef, INIFAP. Ciudad de México, CDMX, México. Publicación Especial Núm 1. pp. 30–34.

Van Zeijl, A., T. A. K. Wardhani, M. Seifi K., L. Rutten, F. Bu, M. Hartog, S. Linders, E. E. Fedorova, T. Bisseling, W. Kohlen and R. Geurts. 2018. CRISPR/cas9-mediated mutagenesis of four putative symbiosis genes of the tropical tree Parasponia andersonii reveals novel phenotypes. Frontiers in Plant Science 9:284. Doi:10.3389/fpls.2018.00284. DOI: https://doi.org/10.3389/fpls.2018.00284

Vargas-Hernandez, J., and W. T Adams. 1992. Age-age correlations and early selection for wood density in young coastal Douglas-fir. Forest Science 38(2):467–478. Doi: 10.1093/FORESTSCIENCE/38.2.467.

Vavilov, N. I. 2009. Origin and Geography of cultivated plants. Cambridge University Press. Cambridge, UK. 536 p.

Wegier, A., L. Barba-Escoto, F. García-Campusano, J. Perez S. y A. Flores G. 2013. Método para el establecimiento in vitro de Caoba (Swietenia macrophylla King) a partir de explantes vegetativos. Cenid Comef, INIFAP. México, D.F., México. 84 p.

Wehenkel, C., S. del R. Mariscal-L., J. P. Jaramillo C., C. A. López S., J. J. Vargas H. and C. Sáenz R. 2017. Genetic diversity and conservation of Mexican forest trees. In: Ahuja, M. R. and S. M. Jain. (eds.). Biodiversity and conservation of woody plants. Sustainable Development and Biodiversity, vol 17. Springer Cham. New York, NY USA. pp. 37–67. Doi: 10.1007/978-3-319-66426-2_2. DOI: https://doi.org/10.1007/978-3-319-66426-2_2

White, T. L., W. T. Adams and D. B. Neale. 2007. Forest genetics. CABI. Wallingford, UK. 553 p. Doi: 10.1079/9781845932855.0000. DOI: https://doi.org/10.1079/9781845932855.0000

White, T. L. and G. R. Hodge. 1989. Concepts of progeny test analysis. In: Predicting Breeding Values with Applications in Forest Tree Improvement. Forestry Sciences 33: 48–61. Doi:10.1007/978-94-015-7833-2_3. DOI: https://doi.org/10.1007/978-94-015-7833-2_3

Wu, H. X. 1998. Study of early selection in tree breeding: 1. Advantage of early selection through increase of selection intensity and reduction of field test size. Silvae Genetica 47(2–3):146–155. https://agris.fao.org/agris-search/search.do?recordID=DE1999T30076 (28 de febrero de 2021).

Ye, G., H. Zhang, B. Chen, S. Nie, H. Liu, W. Gao, H. Wang, Y. Gao and L. Gu. 2019. De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth. Plant Journal 97(4):779–794. Doi: 10.1111/tpj.14159

Zobel, B. y J. Talbert. 1988. Técnicas de mejoramiento genético de arboles forestales. Editorial Limusa. México, D. F., México. 545 p.

Published

2021-11-09

How to Cite

Vallejo Reyna, Miguel Angel, and José Vidal Cob Uicab. 2021. “Topics and Perspectives of Scientific Research on Genetic Improvement of Perennial Species in INIFAP”. Revista Mexicana De Ciencias Forestales 12 (Especial-1). México, ME. https://doi.org/10.29298/rmcf.v12iEspecial-1.1089.