Diferencias en la respuesta de indicadores dendrocronológicos a condiciones climáticas y topográficas

Autores/as

  • Marco Aurelio González Tagle Universidad Autónoma de Nuevo León Facultad de Ciencias Forestales
  • Marcos González Cásares Universidad Autónoma de Nuevo León
  • Wibke Himmelsbach Universidad Autónoma de Nuevo León
  • Homero Alejandro Gárate-Escamilla Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29298/rmcf.v15i81.1435

Palabras clave:

Dendroecología, incremento de área basal, exposición topográfica, dpIR, anillos de crecimiento, Pinus arizonica Engelm

Resumen

La dinámica de la vegetación en ecosistemas forestales, comúnmente, se atribuye a factores climáticos. Sin embargo, aún existe un conocimiento limitado sobre cómo la topografía influye en la sensibilidad climática de especies forestales. Se determinó la respuesta de indicadores dendroecológicos de Pinus arizonica a la exposición y la variabilidad climática. Se obtuvieron índices de ancho de anillo (IAA) e incrementos de área basal (IAB). Se calculó la correlación entre los IAA, registros mensuales de precipitación acumulada (PP) y temperaturas medias (Tmáx y Tmín) en tres periodos: 1990-2000 (B1), 2001-2011 (B2) y 2012-2021 (B3). Se realizaron las pruebas de Mann-Whitney y de Kruskall-Wallis para comprobar diferencias en el IAB por exposición (noroeste, NO y noreste, NE) y por bloque temporal, respectivamente. La Tmáx limitó el crecimiento en los tres periodos, la Tmín lo restringió en el B2 y la PP lo favoreció en los B1 y B2. Se detectó un mayor IAB en la exposición NO (224.7 mm2 año-1) en comparación con la NE (143.9 mm2 año-1). Existió un aumento significativo en el IAB en los periodos B2 (62.1 mm2 año-1) y B3 (56.9 mm2 año-1) en comparación con el B1 (51.2 mm2 año-1). Esto resalta la importancia de considerar la topografía al analizar las asociaciones clima-crecimiento de especies forestales. Considerar la interacción de factores climáticos y microclimas asociados a la topografía específica del sitio, genera una visión integral de los procesos ecológicos, lo que permite proponer mejores estrategias de manejo forestal para la mitigación de los efectos del Cambio Climático.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Acosta-Hernández, A. C., M. Pompa-García and J. J. Camarero. 2017. An updated review of dendrochronological investigations in Mexico, a megadiverse country with a high potential for Tree-Ring Sciences. Forests 8(5):160. Doi: 10.3390/f8050160. DOI: https://doi.org/10.3390/f8050160

Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, … and N. Cobb. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259(4):660-684. Doi: 10.1016/j.foreco.2009.09.001. DOI: https://doi.org/10.1016/j.foreco.2009.09.001

Breshears, D. D., J. W. Nyhan, C. E. Heil and B. P. Wilcox. 1998. Effects of woody plants on microclimate in a semiarid woodland: Soil temperature and evaporation in canopy and intercanopy patches. International Journal of Plant Sciences 159(6):1010-1017. Doi: 10.1086/314083. DOI: https://doi.org/10.1086/314083

Bunn, A. G. 2008. A dendrochronology program library in R (dplR). Dendrochronologia 26(2):115-124. Doi: 10.1016/j.dendro.2008.01.002. DOI: https://doi.org/10.1016/j.dendro.2008.01.002

Cook, E. R. and R. L. Holmes. 1986. Appendix 2: Users manual for program ARSTAN. In: Holmes, R. L., R. K. Adams and H. C. Fritts. Tree-ring chronologies of western North America: California, eastern Oregon and northern Great Basin with procedures used in the chronology development work including users manuals for computer programs COFECHA and ARSTAN. Laboratory of Tree-Ring Research, University of Arizona. Tucson, AZ, United States of America. pp. 50-65.

Diao, Y., S. Zhang, Y. Liu, G. Jin, S. Tian and Y. Liu. 2023. Effects of topography on radial growth of tree species with different mycorrhizal types. Forests 14(3):546. Doi: 10.3390/f14030546. DOI: https://doi.org/10.3390/f14030546

Eilmann, B., M. Dobbertin and A. Rigling. 2013. Growth response of Scots pine with different crown transparency status to drought release. Annals of Forest Science 70:685-693. Doi: 10.1007/s13595-013-0310-z. DOI: https://doi.org/10.1007/s13595-013-0310-z

Farjon, A., J. A. Pérez de la Rosa and B. T. Styles. 1997. A field guide to the pines of Mexico and Central America. Royal Botanic Gardens. Richmond, LDN, England. 147 p.

Fritts, H. C. 2001. Tree rings and climate. Blackburn Press. Caldwell, NJ, United States of America. 567 p.

González-Cásares, M., M. Pompa-García and J. J. Camarero. 2017. Differences in climate-growth relationship indicate diverse drought tolerances among five pine species coexisting in Northwestern Mexico. Trees 31:531-544. Doi: 10.1007/s00468-016-1488-0. DOI: https://doi.org/10.1007/s00468-016-1488-0

González-Tagle, M. A., J. Cerano-Paredes, W. Himmelsbach, E. Alanís-Rodríguez and Á. A. Colazo-Ayala. 2023. Fire records based on dendrochronological techniques for a coniferous forest in the southeastern region of Jalisco, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente 29(1):35-50. Doi: 10.5154/r.rchscfa.2022.03.018. DOI: https://doi.org/10.5154/r.rchscfa.2022.03.018

Grissino-Mayer, H. D. 2001. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Research 57(2):205-221. https://www.ltrr.arizona.edu/~ellisqm/outgoing/dendroecology2014/readings/Grissino_mayer_COFECHA_2001.pdf. (20 de septiembre de 2023).

Harris, I., T. J. Osborn, P. Jones and D. Lister. 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data 7:1-18. Doi: 10.1038/s41597-020-0453-3. DOI: https://doi.org/10.1038/s41597-020-0453-3

Hood, S. M., D. R. Cluck, B. E. Jones and S. Pinnell. 2018. Radial and stand-level thinning treatments: 15-year growth response of legacy ponderosa and Jeffrey pine trees. Restoration Ecology 26(5):813-819. Doi: 10.1111/rec.12638. DOI: https://doi.org/10.1111/rec.12638

Intergovernmental Panel on Climate Change (IPCC). 2023. Climate Change 2023: Synthesis Report, Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, World Meteorological Organization (WMO) and United Nations Environment Programme (UNEP). Geneva, GE, Switzerland. 184 p.

Lévesque, M., L. Walthert and P. Weber. 2016. Soil nutrients influence growth response of temperate tree species to drought. Journal of Ecology 104(2):377-387. Doi: 10.1111/1365-2745.12519. DOI: https://doi.org/10.1111/1365-2745.12519

National Hurricane Center (NHC) and Central Pacific Hurricane Center (CPHC). 2023. NHC Data Archive, Tropical Cyclone Reports (TCRs). National Oceanic and Atmospheric Administration (NOOA). https://www.nhc.noaa.gov/data/#tcr. (20 de septiembre de 2023).

Patil, I. 2021. statsExpressions: R Package for Tidy Dataframes and Expressions with Statistical Details. Journal of Open Source Software 6(61):3236. Doi: 10.21105/joss.03236. DOI: https://doi.org/10.21105/joss.03236

Pompa-García, M., M. González-Cásares, A. C. Acosta-Hernández, J. J. Camarero and M. Rodríguez-Catón. 2017. Drought influence over radial growth of Mexican conifers inhabiting mesic and xeric sites. Forests 8(5):175. Doi: 10.3390/f8050175. DOI: https://doi.org/10.3390/f8050175

Pyatt, J. C., D. F. Tomback, S. C. Blakeslee, M. B. Wunder, … and H. D. Bevency. 2016. The importance of conifers for facilitation at treeline: Comparing biophysical characteristics of leeward microsites in Whitebark Pine Communities. Arctic, Antarctic, and Alpine Research 48(2):427-444. Doi: 10.1657/AAAR0015-055. DOI: https://doi.org/10.1657/AAAR0015-055

R Core Team. 2021. R: A language and environment for statistical computing (version 4.0.3). Vienna, W, Austria. R Foundation for Statistical Computing.

Resler, L. M., D. R. Butler and G. P. Malanson. 2005. Topographic shelter and conifer establishment and mortality in an alpine environment, Glacier National Park, Montana. Physical Geography 26(2):112-125. Doi: 10.2747/0272-3646.26.2.112. DOI: https://doi.org/10.2747/0272-3646.26.2.112

Rubio-Cuadrado, Á., C. Gómez, J. Rodríguez-Calcerrada, R. Perea, … and L. Gil. 2021. Differential response of oak and beech to late frost damage: an integrated analysis from organ to forest. Agricultural and Forest Meteorology 297:108243. Doi: 10.1016/j.agrformet.2020.108243. DOI: https://doi.org/10.1016/j.agrformet.2020.108243

Schad, P. 2023. World Reference Base for Soil Resources-Its fourth edition and its history. Journal of Plant Nutrition and Soil Science 186(2):151-163. Doi: 10.1002/jpln.202200417. DOI: https://doi.org/10.1002/jpln.202200417

Stahle, D. W., E. R. Cook, D. J. Burnette, J. Villanueva, … and I. M. Howard. 2016. The Mexican drought atlas: Tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quaternary Science Reviews 149:34-60. Doi: 10.1016/j.quascirev.2016.06.018. DOI: https://doi.org/10.1016/j.quascirev.2016.06.018

Sundqvist, M. K., N. J. Sanders and D. A. Wardle. 2013. Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annual Review of Ecology, Evolution, and Systematics 44:261-280. Doi: 10.1146/annurev-ecolsys-110512-135750. DOI: https://doi.org/10.1146/annurev-ecolsys-110512-135750

Urrutia-Jalabert, R., J. Barichivich, V. Rozas, A. Lara, … and E. Cuq. 2021. Climate response and drought resilience of Nothofagus obliqua secondary forests across a latitudinal gradient in south-central Chile. Forest Ecology and Management 485:118962. Doi: 10.1016/j.foreco.2021.118962. DOI: https://doi.org/10.1016/j.foreco.2021.118962

Vicente-Serrano, S. M., S. Beguería and J. I. López-Moreno. 2010. A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. Journal of Climate 23(7):1696-1718. Doi: 10.1175/2009JCLI2909.1. DOI: https://doi.org/10.1175/2009JCLI2909.1

Vitali, A., J. J. Camarero, M. Garbarino, A. Piermattei and C. Urbinati. 2017. Deconstructing human-shaped treelines: Microsite topography and distance to seed source control Pinus nigra colonization of treeless areas in the Italian Apennines. Forest Ecology and Management 406:37-45. Doi: 10.1016/j.foreco.2017.10.004. DOI: https://doi.org/10.1016/j.foreco.2017.10.004

VoorTech Consoulting. 2021. The tree ring measuring program project J2X. (V5.03). Holderness, NH, United States of America. VoorTech. http://www.voortech.com/projectj2x/. (22 de septiembre de 2023).

Publicado

24-01-2024

Cómo citar

González Tagle, Marco Aurelio, Marcos González Cásares, Wibke Himmelsbach, y Homero Alejandro Gárate-Escamilla. 2024. «Diferencias En La Respuesta De Indicadores dendrocronológicos a Condiciones climáticas Y topográficas». Revista Mexicana De Ciencias Forestales 15 (81). México, ME:59-82. https://doi.org/10.29298/rmcf.v15i81.1435.

Número

Sección

Artículo Científico