Long temporal trend and seasonal variation analysis of forest fires in Brazilian biomes: A stochastic approach

Autores/as

DOI:

https://doi.org/10.29298/rmcf.v15i84.1402

Palabras clave:

Bayesian modeling, Brazilian biomes, long-term trends, Poisson model, stochastic variation, wildfires

Resumen

This study uses a Bayesian Structural Poisson model to address the increasing frequency of wildfires in Brazilian biomes. Long-term trends, seasonal behavior, and the impact of certain meteorological variables on the occurrence of forest fires were identified in the following biomes: Amazon, Caatinga, Cerrado, Atlantic Forest, Pampa, and Pantanal. Nonlinear temporal trends were observed in all biomes, with varying annual increments between 1999-2020: 5.5 % in Pampa, 4.9 % in Pantanal, 3.0 % in Caatinga, 2.3 % in Amazon, 2.2 % in Atlantic Forest, and 2.2 % in Cerrado. Seasonal patterns were present in all biomes, with similarities among the Amazon, Caatinga, Cerrado, and Atlantic Forest, while the Pampa and Pantanal displayed a bimodal pattern. Environmental factors such as evapotranspiration, precipitation, and temperature had significant effects on fire occurrence in different biomes. The findings of this study contribute valuable insights into fire patterns and their relationships with environmental factors in Brazilian biomes, helping to inform fire management and prevention strategies.

Descargas

Citas

Batista de P., J., M. Aragona, K. Y. Pioto H. and M. Â. Marini. 2017. Migration patterns and seasonal forest use by birds in the Brazilian Pantanal. Bird Conservation International 27(3):371-387. Doi: 10.1017/S0959270916000290. DOI: https://doi.org/10.1017/S0959270916000290

Brando, P. M., B. Soares-Filho, L. Rodrigues, A. Assunção, ... and M. T. Coe. 2020. The gathering firestorm in southern Amazonia. Science Advances 6(2):1-9. Doi: 10.1126/sciadv.aay1632. DOI: https://doi.org/10.1126/sciadv.aay1632

Carvalho A., M., G. Bastos L., J. F. de Oliveira-Júnior, A. Souza, ... and R. C. Real A. 2022. Temporal and spatial patterns of fire activity in three biomes of Brazil. Science of The Total Environment 844:138-157. Doi: 10.1016/j.scitotenv.2022.157138. DOI: https://doi.org/10.1016/j.scitotenv.2022.157138

Cullen, A. C., T. Axe and H. Podschwit. 2021. High-severity wildfire potential–associating meteorology, climate, resource demand and wildfire activity with preparedness levels. International Journal of Wildland Fire 30(1):30-41. Doi: 10.1071/WF20066. DOI: https://doi.org/10.1071/WF20066

da Silva J., C. A., P. E. Teodoro, R. Coll D., L. P. Ribeiro T., … and C. U. Facco. 2020. Persistent fire foci in all biomes undermine the Paris Agreement in Brazil. Scientific Reports 10:16246. Doi: 10.1038/s41598-020-72571-w. DOI: https://doi.org/10.1038/s41598-020-72571-w

de Andrade, C. F., R. C. Delgado, M. L. F. Barbosa, P. E. Teodoro, … and G. F. Capristo-Silva. 2020. Fire regime in Southern Brazil driven by atmospheric variation and vegetation cover. Agricultural and Forest Meteorology 295:108194. Doi: 10.1016/j.agrformet.2020.108194. DOI: https://doi.org/10.1016/j.agrformet.2020.108194

de Magalhães N., N. and H. Evangelista. 2022. Human activity behind the unprecedented 2020 wildfire in Brazilian wetlands (Pantanal). Frontiers in Environmental Science 10:888578. Doi: 10.3389/fenvs.2022.888578. DOI: https://doi.org/10.3389/fenvs.2022.888578

de Oliveira, A. S., R. G. Rajão, B. S. Soares F., U. Oliveira, … and L. S. de Lima. 2019. Economic losses to sustainable timber production by fire in the Brazilian Amazon. The Geographical Journal 185(1):55-67. Doi: 10.1111/geoj.12276. DOI: https://doi.org/10.1111/geoj.12276

de Oliveira-Júnior, J. F., P. E. Teodoro, C. A. da Silva J., F. H. R. Baio, … and M. da Silva C. 2020. Fire foci related to rainfall and biomes of the state of Mato Grosso Do Sul, Brazil. Agricultural and Forest Meteorology 282-283:107861. Doi: 10.1016/j.agrformet.2019.107861. DOI: https://doi.org/10.1016/j.agrformet.2019.107861

Franco C., R., M. P. Ledru, R. de Almeida S. and C. Favier. 2020. Vegetation and fire variability in the central Cerrados (Brazil) during the Pleistocene-Holocene transition was influenced by oscillations in the SASM boundary belt. Quaternary Science Reviews 232:106209. Doi: 10.1016/j.quascirev.2020.106209. DOI: https://doi.org/10.1016/j.quascirev.2020.106209

Ganteaume, A., A. Camia, M. Jappiot, J. San-Miguel-Ayanz, M. Long-Fournel and C. Lampin. 2013. A review of the main driving factors of forest fire ignition over Europe. Environmental Management 51:651-662. Doi: 10.1007/s00267-012-9961-z. DOI: https://doi.org/10.1007/s00267-012-9961-z

Harvey, A. and S. J. Koopman. 2014. Structural time series models. In: Lovric, M. (Edit.). Wiley StatsRef: Statistics Reference Online. Springer. New York, NY, United States of America. pp. 1555-1558. DOI: https://doi.org/10.1002/9781118445112.stat05808

Instituto Brasileiro de Geografia e Estatística (IBGE). 2004. Mapa de Biomas do Brasil. IBGE. https://www.ibge.gov.br/geociencias/informacoes-ambientais/vegetacao/15842-biomas.html. (May 12, 2022).

Instituto Nacional de Pesquisas Espaciales (INPE). 2021. Fire Monitoring Program. INPE. https://www.gov.br/inpe/pt-br. (February 17, 2022).

Li, P., C. Xiao, Z. Feng, W. Li and X. Zhang. 2020. Occurrence frequencies and regional variations in Visible Infrared Imaging Radiometer Suite (VIIRS) global active fires. Global Change Biology 26(5):2970-2987. Doi: 10.1111/gcb.15034. DOI: https://doi.org/10.1111/gcb.15034

Libonati, R., C. C. DaCamara, L. F. Peres, L. A. Sander de C. and L. C. Garcia. 2020. Rescue Brazil’s burning Pantanal wetlands. Nature 588(7837):217-219. Doi: 10.1038/d41586-020-03464-1. DOI: https://doi.org/10.1038/d41586-020-03464-1

Lopes P., D., A. Gonçalves S., S. Guedes B., G. Souza L., ... and F. T. Pereira T. 2020. Periods of highest occurrence of forest fires in Brazil. Floresta 51(2):484-491. Doi: 10.5380/rf.v51i2.70286. DOI: https://doi.org/10.5380/rf.v51i2.70286

Marengo, J. A., A. P. Cunha, L. A. Cuartas, K. R. Deusdará L., ... and F. Bender. 2022. Corrigendum: Extreme drought in the Brazilian Pantanal in 2019–2020: Characterization, causes, and impacts. Frontiers in Water 4:942068. Doi: 10.3389/frwa.2022.942068. DOI: https://doi.org/10.3389/frwa.2022.942068

Ministério do Meio Ambiente (MMA). 2022. Biomas. https://antigo.mma.gov.br/biomas.html. (August 1, 2022).

Moreira de A., F., L. Guimarães F. and A. E. Arantes. 2012. Distribution patterns of burned areas in the brazilian biomes: An analysis based on satellite data for the 2002-2010 period. Remote Sensing 4(7):1929-1946. Doi: 10.3390/rs4071929. DOI: https://doi.org/10.3390/rs4071929

Oliveira, U., B. Soares-Filho, M. Bustamante, L. Gomes, J. P. Ometto and R. Rajão. 2022. Determinants of fire impact in the Brazilian biomes. Frontiers in Forests and Global Change 5:735017. Doi: 10.3389/ffgc.2022.735017. DOI: https://doi.org/10.3389/ffgc.2022.735017

Pellegrini, A. F. A., A. M. Hein, J. Cavender-Bares, R. A. Montgomery, … and P. B. Reich. 2021. Disease and fire interact to influence transitions between savanna–forest ecosystems over a multi-decadal experiment. Ecology Letters 24(5):1007-1017. Doi: 10.1111/ele.13719. DOI: https://doi.org/10.1111/ele.13719

Pereira J., A. C., S. L. J. Oliveira, J. M. C. Pereira and M. A. Amaral T. 2014. Modelling fire frequency in a Cerrado Savanna Protected Area. PLoS ONE 9(7):1-11. Doi: 10.1371/journal.pone.0102380. DOI: https://doi.org/10.1371/journal.pone.0102380

Pivello, V. R., I. Vieira, A. V. Christianini, D. B. Ribeiro, … and G. E. Overbeck. 2021. Understanding Brazil’s catastrophic fires: Causes, consequences and policy needed to prevent future tragedies. Perspectives in Ecology and Conservation 19(3):233-255. Doi: 10.1016/j.pecon.2021.06.005. DOI: https://doi.org/10.1016/j.pecon.2021.06.005

R Core Team. 2022. R: A language and environment for statistical computing (v. 4.2.1). R Foundation for Statistical Computing. Vienna, W, Austria. https://www.R-project.org/. (June 12, 2020).

Rue, H., S. Martino and N. Chopin. 2009. Approximate bayesian inference for latent Gaussian models by using integrated nested laplace approximations. Journal of the Royal Statistical Society: Series B Statistical Methodology 71(2):319-392. Doi: 10.1111/j.1467-9868.2008.00700.x. DOI: https://doi.org/10.1111/j.1467-9868.2008.00700.x

Schmidt, I. B. and L. Eloy. 2020. Fire regime in the Brazilian Savanna: Recent changes, policy and management. Flora 268:151613. Doi: 10.1016/j.flora.2020.151613. DOI: https://doi.org/10.1016/j.flora.2020.151613

Singh, M. and X. Zhu. 2021. Analysis of how the spatial and temporal patterns of fire and their bioclimatic and anthropogenic drivers vary across the Amazon rainforest in El Niño and Non-El Niño years. PeerJ. 9:e12029. Doi: 10.7717/peerj.12029. DOI: https://doi.org/10.7717/peerj.12029

Tedim, F., V. Leone, M. Amraoui, C. Bouillon, … and G. Xanthopoulos. 2018. Defining extreme wildfire events: Difficulties, challenges, and impacts. Fire 1(1):9. Doi: 10.3390/fire1010009. DOI: https://doi.org/10.3390/fire1010009

Teixeira, A., J. Leivas, C. Takemura, G. Bayma, … and C. Silva. 2023. Remote sensing environmental indicators for monitoring spatial and temporal dynamics of weather and vegetation conditions: applications for Brazilian biomes. Environmental Monitoring and Assessment 195(8):944. Doi: 10.1007/s10661-023-11560-8. DOI: https://doi.org/10.1007/s10661-023-11560-8

Villar-Hernández, B. de J., S. Pérez-Elizalde, D. A. Rodríguez-Trejo and P. Pérez-Rodríguez. 2022. Spatio-temporal analysis of wildfires occurrence in the mexican state of Oaxaca. Revista Mexicana de Ciencias Forestales 13(74):120-144. Doi: 10.29298/rmcf.v13i74.1274. DOI: https://doi.org/10.29298/rmcf.v13i74.1274

Publicado

27-06-2024

Cómo citar

Villar, Bartolo de Jesús, Paulino Pérez Rodríguez, y Amaury de Souza. 2024. «Long Temporal Trend and Seasonal Variation Analysis of Forest Fires in Brazilian Biomes: A Stochastic Approach». Revista Mexicana De Ciencias Forestales 15 (84). México, ME:29-53. https://doi.org/10.29298/rmcf.v15i84.1402.

Número

Sección

Artículo Científico
Crossref
0
Scopus
0