Supervivencia inicial en tres especies de pino bajo la aplicación de antitranspirantes

Autores/as

  • Tomás Pineda Ojeda Campo Experimental Valle de México, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. México
  • Andrés Flores García Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. México
  • Benigno Estrada Drouaillet Facultad de Ingeniería y Ciencias, Universidad Autónoma de Tamaulipas, Centro Universitario, Cd. Victoria, Tamaulipas CP 87120, México. CP 87120.
  • José Leonardo García Rodríguez Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Campo Experimental Valle de Guadiana. México.
  • Eulogio Flores Ayala Campo Experimental Valle de México, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. México
  • Enrique Buendía Rodríguez Campo Experimental Valle de México, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. México

DOI:

https://doi.org/10.29298/rmcf.v13i69.1145

Palabras clave:

Conservación forestal, Pinus cooperi, Pinus durangensis, Pinus engelmannii, sequía, restauración forestal

Resumen

En México, el estrés hídrico y la mala calidad de planta son algunas de las principales causas de mortalidad en plantaciones. El uso de productos antitranspirantes en especies vegetales ha sido una alternativa para reducir la pérdida de agua ante condiciones de disponibilidad limitada de este recurso. El objetivo del presente estudio consistió en evaluar el efecto de tres productos antitranspirantes (Vapor Gard®, Fitoglass® y Ecofilm®) y dos métodos de aplicación (aspersión e inmersión) en la supervivencia de plantas de Pinus cooperi, P. durangensis y P. engelmannii, a partir de indicadores morfológicos de calidad inicial conocidos. Previo al establecimiento del ensayo, en cada individuo se evaluaron cuatro indicadores morfológicos de calidad, posteriormente se aplicaron los antitranspirantes y se evaluó la supervivencia en campo un mes después. Los resultados indicaron que la calidad de planta fue alta, y que la aplicación de antitranspirantes tuvo efectos significativos en el porcentaje de supervvivencia: P. engelmanni presentó 94 % con Fitoglass® por inmersión, P. cooperi 61 % con Ecofilm® por inmersión, y P. durangensis 58 % con Ecofilm® por aspersión. Se concluye que la aplicación de los antitranspirantes y el método de aplicación aumentan de forma diferenciada la supervivencia inicial en las especies estudiadas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AbdAllah, A. 2019. Impacts of Kaolin and Pinoline foliar application on growth, yield and water use efficiency of tomato (Solanum lycopersicum L.) growth under water deficit: a comparative study. Journal of the Saudi Society of Agricultural Sciences. 18(3): 256-268. doi: 10.1016/j.jssas.2017.08.001 DOI: https://doi.org/10.1016/j.jssas.2017.08.001

Alm, A. and J. Stanton. 1990. Field trials of root dipping treatments for red pine, Jack pine, and white spruce nursery stock in Minnesota. Tree Planters' Notes 41(3): 18-20. https://rngr.net/publications/tpn/41-3/field-trials-of-root-dipping-treatments-for-red-pine-jack-pine-and-white-spruce-nursery-stock-in-minnesota-1/at_download/file (29 de octubre de 2021).

Brown, K. W. and N. J. Rosenberg. 1973. A resistance model to predict evapotranspiration and its application to a sugar beet field. Agronomy Journal 65(3): 341–347. Doi: 10.2134/agronj1973.00021962006500030001x. DOI: https://doi.org/10.2134/agronj1973.00021962006500030001x

Candia B., R. y G. Caiozzi A. 2005. Intervalos de confianza. Revista Médica de Chile 133: 1111-1115. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872005000900017 (30 de septiembre de 2021). DOI: https://doi.org/10.4067/S0034-98872005000900017

Chaves S., M. A., F. Hernández B. y G. Gutiérrez Z. 1985. Efecto de antitranspirantes y azúcar utilizados en el transplante de cafetos a raíz desnuda. Agronomía Costarricense 9(1):71-78. https://www.mag.go.cr/rev_agr/v09n01_071.pdf (30 de abril de 2021).

Comisión Nacional Forestal (Conafor). 2019. Estado que guarda el sector forestal en México. Conafor. Zapopan, Jal., México. 412 p.

Davies W. J. and T. T. Kozlowski. 1975. Effects of applied abscisic acid and plant water stress on transpiration of woody angiosperms. Forest Science 21(2): 191–195. Doi:10.1093/forestscience/21.2.191.

Escobar-Alonso, S. y D. A. Rodríguez T. 2019. Estado del arte en la investigación sobre calidad de planta del género Pinus en México. Revista Mexicana de Ciencias Forestales 10(55): 4–38. Doi:10.29298/rmcf.v10i55.558. DOI: https://doi.org/10.29298/rmcf.v10i55.558

Esperón-Rodríguez, M. and V. L. Barradas. 2015. Ecophysiological vulnerability to climate change: water stress responses in four tree species from the central mountain region of Veracruz, Mexico. Regional Environmental Change 15(1): 93-108. Doi:10.1007/s10113-014-0624-x. DOI: https://doi.org/10.1007/s10113-014-0624-x

Flores, A., J. Climent, V. Pando, J. López U. and R. Alía. 2018. Intraspecific variation in pines from the Trans-Mexican Volcanic Belt grown under two watering regimes: Implications for management of genetic resources. Forests 9(2): 71. Doi:10.3390/f9020071. DOI: https://doi.org/10.3390/f9020071

Flores, A., M. E. Romero S., R. Pérez M., T. Pineda O. y F. Moreno S. 2021. Potencial de restauración de bosques de coníferas en zonas de movimiento de germoplasma en México. Revista Mexicana de Ciencias Forestales 12(63): 4–27. Doi:10.29298/rmcf.v12i63.813. DOI: https://doi.org/10.29298/rmcf.v12i63.813

García, E. 2004. Modificaciones al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de la República Mexicana). 5ª ed. UNAM. México, D. F., México. 91 p.

González E., M. S., M. González E. y M. A. Márquez L. 2006. Vegetación y ecorregiones de Durango. IPN. Durango, Dgo., México. 165 p.

Grossnickle, S. C. 2012. Why seedlings survive: Influence of plant attributes. New Forests 43(5–6): 711–738. Doi:10.1007/s11056-012-9336-6. DOI: https://doi.org/10.1007/s11056-012-9336-6

Levitt, J. 1980. Responses of plants to environmental stresses. V 1: chilling, freezing and high temperature stresses. V 2: water stress, dehydration and drought injury. Academic Press. New York, NY, USA. 607 p.

Lisar, S. Y. S., R. Motafakkerazad, M. M. Hossain and I. M. M. Rahman. 2012. Water stress in plants: causes, effects and responses. In: Rahman, I. M. M. and H. Hasegawa (eds.). Water stress. InTech. Rijeka, Croatia. pp. 1-14.

Luna-Flores, W., H. Estrada-Medina, J. J. M. Jiménez-Osornio y L. L. Pinzón-López. 2012. Efecto del estrés hídrico sobre el crecimiento y eficiencia del uso del agua en plántulas de tres especies arbóreas caducifolias. Terra Latinoamericana 30(4): 343-353. http://www.scielo.org.mx/pdf/tl/v30n4/2395-8030-tl-30-04-00343.pdf (29 de abril de 2021).

Magnussen, S. 1986. Effects of root-coating with the polymer waterlock on survival and growth of drought-stressed bareroot seedlings of white spruce (Picea glauca (Moench) Voss) and red pine (Pinus resinosa Ait.). Tree Planters' Notes 37(1): 15-19. https://rngr.net/publications/tpn/37-1/effects-of-root-coating-with-the-polymer-waterlock-on-survival-and-growth-of-drought-stressed-bareroot-seedlings-of-white-spruce-picea-glauca-moench-voss-and-red-pine-pinus-resinosa-ait./at_download/file (29 de octubre de 2021).

Mexal, J. G. and T. D. Landis. 1990. Target seedling concepts: height and diameter. In: Rose, R., S. J. Campbell and T. D. Landis (eds.). Target seedling symposium: proceedings, combined meeting of the western forest nursery associations. U. S. Department of Agriculture, Forest Service. Fort Collins, CO, USA. pp. 17–35.

Mikiciuk, G., M. Mikiciuk and P. Ptak. 2015. The effect of antitranspirants DI-1-P-Menthene on some physiological traits of strawberry. Journal of Ecological Engineering 16(4): 161-167. Doi: 10.12911/22998993/59366. DOI: https://doi.org/10.12911/22998993/59366

Moctezuma L., G. y A. Flores. 2020. Importancia económica del pino (Pinus spp.) como recurso natural en México. Revista Mexicana de Ciencias Forestales 11(60): 161-185. Doi:10.29298/rmcf.v11i60.720. DOI: https://doi.org/10.29298/rmcf.v11i60.720

Moftah, A. E. and A. R. L. Al-Humaid. 2005. Effects of antitranspirants on wáter relations and photosyntetic rate of cultivate tropical plants (Polianthes tuberosa L.). Polish Journal of Ecology 53(20): 165-175. https://miiz.waw.pl/pliki/article/ar53_2_02.pdf (30 de abril de 2021).

Nitzsche, P., G. A. Berkowitz and J. Rabin. 1991. Development of a seedling-applied antitranspirant formulation to enhace water status, growth, and yield of transplanted bell pepper. Journal of the American Society for Horticultural Science 116(3): 405-411. Doi:10.21273/JASHS.116.3.405.

Odlum, K. D. and S. J. Colombo. 1987. The effect of three film-forming antitranspirants on moisture stress of outplanted black spruce seedlings. Tree Planter´s Notes 8(4): 23-26. https://rngr.net/publications/tpn/38-4/the-effect-of-three-film-forming-antitranspirants-on-moisture-stress-of-outplanted-black-spruce-seedlings/at_download/file (30 de abril de 2021).

Prieto R., J. Á., A. Aldrete, J. C. Hernández D. y J. R. Goche T. 2016. Causas de mortalidad de las reforestaciones y propuestas de mejora. In: Prieto R., J. A. y J. R. Goche T. (comps.). La reforestación en México. Problemática y alternativas de solución. Universidad Juárez del estado de Durango. Durango, Dgo. México. pp. 55-65.

Prieto R., J. Á., A. Duarte S., J. R. Goche T., M. M. González O. y M.-Á. Pulgarín G. 2018. Supervivencia y crecimiento de dos especies forestales, con base en la morfología inicial al plantarse. Revista Mexicana de Ciencias Forestales 9(47): 151–168. Doi:10.29298/rmcf.v9i47.182. DOI: https://doi.org/10.29298/rmcf.v9i47.182

Rodríguez T., D. A. 2008. Indicadores de calidad de planta forestal. Mundi Prensa. México, D. F., México. 156 p.

Rodríguez-Ortiz, G., R. D. Aragón-Peralta, J. R. Enríquez-del Valle, A. Hernández-Hernández, W. Santiago-García y G. V. Campos-Angeles. 2020. Calidad de plántula de progenies selectas de Pinus pseudostrobus Lindl. var. oaxacana del sur de México. Interciencia 45(2): 96–101. https://bit.ly/3sGkgLY (30 de abril de 2021).

Rose, R. and D. L. Haase. 1995. Effect of the antidiseccant Mointurin® on conifer seedling field performance. Tree Planter´s Notes 46(3):97-101. https://admin.rngr.net/publications/tpn/46-3/effect-of-the-antidesiccant-moisturin-on-conifer-seedling-field-performance/at_download/file (30 de abril de 2021).

Sáenz-Romero, C., J.-B. Lamy, E. Loya-Rebollar, A. Plaza-Aguilar, R. Burlett, P. Lobit and S. Delzon. 2013. Genetic variation of drought-induced cavitation resistance among Pinus hartwegii populations from an altitudinal gradient. Acta Physiologiae Plantarum 35(10): 2905-2913. Doi:10.1007/s11738-013-1321-y. DOI: https://doi.org/10.1007/s11738-013-1321-y

Sáenz-Romero, C. M. Larter, N. González-Muñoz, C. Wehenkel, A. Blanco-Garcia, D. Castellanos-Acuña, R. Burlett and S. Delzon. 2017. Mexican conifers differ in their capacity to face climate change. Journal of Plant Hydraulics 4: e-003. Doi:10.20870/jph.2017.e003. DOI: https://doi.org/10.20870/jph.2017.e003

Salisbury, F. y F. Ross. 2000. Fisiología de las plantas. Thompson Editores Spain Paraninfo, S. A. Madrid, España. 947 p.

Statistical Analysis System (SAS). 2010. SAS user’s guide: Statistics. Version 9.3. SAS Institute Inc. Cary, NC, USA. n/p.

Secretaría de Economía. 2016. Norma Mexicana NMX-AA-170-SCFI-2016. Certificación de la operación de viveros forestales. http://sivicoff.cnf.gob.mx/ContenidoPublico/10 Material de Consulta/Normatividad Vigente/NMX-AA-170-SCFI-2016.pdf (13 de junio de 2020).

Shinohara, T. and D. I. Leskovar. 2014. Effect of ABA, antitranspirants, heat and drought stress on plants growth, physiology and water status of artichoke transplants. Scientia Horticulturae 165: 225-234. Doi:10.1016/j.scienta.2013.10.045. DOI: https://doi.org/10.1016/j.scienta.2013.10.045

Simpson, D. G. 1984. Filmforming antitranspirants: their effects on root growth capacity, storability, moisture stress avoidance, and field perfomance of containerized conifer seedlings. The Forestry Chronicle 60(6): 335-339. Doi:10.5558/tfc60335-6 DOI: https://doi.org/10.5558/tfc60335-6

Taiz, L. and E. Zeiger. 2010. Plant physiology. Sinauer Associates Inc. Sunderland, MA, USA. 623 p.

Vera-Castillo, J. A. G. 1995. The influence of antidesiccants on field performance and physiology of 2+0 Ponderosa Pine (Pinus ponderosa Dougl.) seedlings. Doctoral thesis. Oregon State University, OR, USA. 134 p.

Yepes, A. y M. Silveira–Buckeridge. 2011. Respuestas de las plantas ante los factores ambientales del cambio climático global (Revisión). Colombia Forestal 14(2): 213-232. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-07392011000200006 (29 de abril de 2021). DOI: https://doi.org/10.14483/udistrital.jour.colomb.for.2011.2.a06

Localización del sitio de establecimiento del ensayo en el Campo experimental Valle de Guadiana (CEVAG) del INIFAP.

Publicado

2022-01-10

Cómo citar

Pineda Ojeda, Tomás, Andrés Flores García, Benigno Estrada Drouaillet, José Leonardo García Rodríguez, Eulogio Flores Ayala, y Enrique Buendía Rodríguez. 2022. «Supervivencia Inicial En Tres Especies De Pino Bajo La aplicación De Antitranspirantes». Revista Mexicana De Ciencias Forestales 13 (69). México, ME:177-200. https://doi.org/10.29298/rmcf.v13i69.1145.

Número

Sección

Artículo Científico