Changes of the vegetation structure and composition along an altitudinal and antropogenic gradient
DOI:
https://doi.org/10.29298/rmcf.v16i92.1587Keywords:
biomass, temperate forest, canopy, understory, dissimilarity, resilienceAbstract
Few studies have examined how human activities influence the structure and composition of vegetation ecological patterns along altitudinal gradients, to identify areas with different resilience or susceptibility. This study evaluated the impact of anthropogenic effects on the composition and structure of an Abies religiosa forest in the Magdalena River basin, near Mexico City. We established 15 plots, each measuring 30×30 m2, at three different altitudes: high (3 449 masl), intermediate (3 202 masl), and low (3 092 masl). Some environmental variables and calculated indexes of anthropogenic disturbances, including human activities, livestock presence and deforestation were assumed. Changes in composition and structure were analyzed using a dissimilarity model and multivariate analysis. Our findings recorded a total of 42 species, consisting of eight tree species and 34 herb species. Notably, mid-altitude plots, despite experiencing a high level of livestock activities, displayed greater species richness in both the understory and canopy. The trees in these plots, ranging from 20 to 40 m high, contributed to a larger basal area and showed a direct response to light and temperature. In contrast, the lower-altitude plots had the greatest basal area attributed to trees around 10 m tall. The results showed that altitude and anthropogenic disturbance are determining factors in the patterns of plant diversity and composition, in the canopy structure and in the understory.
Downloads
References
Arias-Téllez, A., & García-Martínez, R. (2017). Almacén de carbono en plantaciones de Pinus patula y Pinus ayacahuite en San Miguel Tenextepec, Amanalco, Estado de México. En V. J. C. Vinay, V. A. Esqueda E., O. H. Tusquy V., A. Ríos U., M. V. Vázquez H. & C. Perdomo M. (Comps.), Avances en investigación agrícola, pecuaria, forestal, acuícola, pesquería, desarrollo rural, transferencia de tecnología, biotecnología, ambiente, recursos naturales y cambio climático (pp. 1057-1065). Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. https://www.researchgate.net/publication/322448012_Almacen_de_carbono_en_plantaciones_de_Pinus_patula_y_Pinus_ayacahuite_en_San_Miguel_Tenextepec_Amanalco_Estado_de_Mexico
Avendaño-Hernández, D. M., Acosta-Mireles, M., Carrillo-Anzures, F., & Etchevers-Barra, J. D. (2009). Estimación de biomasa y carbono en un bosque de Abies religiosa. Revista Fitotecnia Mexicana, 32(3), 233-238. https://www.researchgate.net/publication/317440213_Estimacion_de_biomasa_y_carbono_en_un_bosque_de_Abies_religiosa
Ávila-Akerberg, V. D. (2004). Autenticidad de los bosques en la cuenca alta del Rio Magdalena: Diagnóstico hacia la restauración ecológica [Tesis de Maestría en Ciencias Biológicas con orientación en Restauración Ecológica, Universidad Nacional Autónoma de México]. Repositorio universitario UNAM. https://hdl.handle.net/20.500.14330/TES01000329636
Ávila-Sánchez, P., Sánchez-González, A., Catalán-Heverástico, C., Almazán-Núñez, R. C., & Jiménez-Hernández, J. (2018). Patrones de riqueza y diversidad de especies vegetales en un gradiente altitudinal en Guerrero, México. Polibotánica, (45), 101–113. https://doi.org/10.18387/polibotanica.45.8
Bonilla-Valencia, L., Hernández-Apolinar, M., Zúñiga-Vega, J. J., Espinosa-García, F. J., Martínez-Orea, Y., & Castillo-Argüero, S. (2022). Incorporating rainy season and reproductive phenology into the survival and transition rates of the invasive species Sambucus nigra: an approximation with multistate models. Invasive Plant Science and Management, 15(1), 16-24. https://doi.org/10.1017/inp.2021.37
Bradstreet, R. B. (1954). Determination of nitro nitrogen by Kjeldahl method. Analytical Chemistry, 26(1), 235-236. https://doi.org/10.1021/ac60085a044
Calderón de Rzedowski, G., & Rzedowski, J. (2001). Flora fanerogámica del Valle de México. Instituto de Ecología, A. C. https://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/Flora_del_Valle_de_Mx1.pdf
Cano-Santana, Z. (1994). Flujo de energía a través de Sphenarium purpurascens (Orthoptera: Acrididae) y productividad primaria neta aérea en una comunidad xerófila [Tesis de Doctorado en Ecología, Universidad Nacional Autónoma de México]. Repositorio universitario UNAM. https://hdl.handle.net/20.500.14330/TES01000217751
Castillo-Argüero, S., Martínez-Orea, Y., & Romero-Romero, M. A. (Coords.). (2016). Las malezas de la cuenca del río Magdalena, Ciudad de México. Prensa de Ciencias. https://tienda.fciencias.unam.mx/es/inicio/200-las-malezas-de-la-cuenca-del-rio-magdalena-ciudad-de-mexico-9786070280078.html
Chojnacky, D. C., Heath, L. S., & Jenkins, J. C. (2014). Updated generalized biomass equations for North American tree species. Forestry: An International Journal of Forest Research, 87(1), 129-151. https://doi.org/10.1093/forestry/cpt053
Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs: High diversity of trees and corals is maintained only in a nonequilibrium state. Science, 199(4335), 1302-1310. https://doi.org/10.1126/science.199.4335.1302
Cornejo-Tenorio, G., & Ibarra-Manríquez, G. (2017). Flora of the core zones of the Monarch Butterfly Biosphere Reserve, Mexico: Composition, geographical affinities, and beta diversity. Botanical Sciences, 95(1), 103-129. https://doi.org/10.17129/botsci.803
Cruzado-Vargas, A. L. (2017). Variación de caracteres cuantitativos entre procedencias de Abies religiosa originadas en un gradiente altitudinal en la Reserva de la Biosfera de la Mariposa Monarca: etapa de vivero [Tesis de Maestría en Ciencias Forestales, Universidad Autónoma Chapingo]. Repositorio universitario UACH. https://repositorio.chapingo.edu.mx/items/16fd31d4-72db-40fa-83d1-dc99933bff28
Cuevas-Guzmán, R., Cisneros-Lepe, E. A., Jardel-Peláez, E. J., Sánchez-Rodríguez, E. V., Guzmán-Hernández, L., Núñez-López, N. M., & Rodríguez-Guerrero, C. (2011). Análisis estructural y de diversidad en los bosques de Abies de Jalisco, México. Revista Mexicana de Biodiversidad, 82(4), 1219-1233. https://doi.org/10.22201/ib.20078706e.2011.4.741
De Cáceres, M., Legendre, P., & He, F. (2013). Dissimilarity measurements and the size structure of ecological communities. Methods in Ecology and Evolution, 4(12), 1167-1177. https://doi.org/10.1111/2041-210X.12116
Dorrough, J., Moxham, C., Turner, V., & Sutter, G. (2006). Soil phosphorus and tree cover modify the effects of livestock grazing on plant species richness in Australian grassy woodland. Biological Conservation, 130(3), 394-405. https://doi.org/10.1016/j.biocon.2005.12.032
Dyderski, M. K., & Jagodziński, A. M. (2019). Similar impacts of alien and native tree species on understory light availability in a temperate forest. Forests, 10(11), 951. https://doi.org/10.3390/f10110951
Frazer, G. W., Canham, C. D., & Lertzman, K. P. (1999). Gap Light Analyzer (GLA): Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs. Users manual and program documentation, Version 2.0. Simon Fraser University. https://rem-main.rem.sfu.ca/downloads/Forestry/GLAV2UsersManual.pdf
Gobierno del Distrito Federal. (2000). Programa General de Ordenamiento Ecológico del Distrito Federal 2000-2003. Gobierno del Distrito Federal. https://paot.org.mx/centro/programas/pgoedf.pdf
González-Iturbe, O. A. (2019). Ecuaciones alométricas para la estimación de la biomasa en la parte aérea de la vegetación: caso de algunas especies de coníferas en la localidad de San Juan Cuauhtémoc, Tlahuapan, México [Tesis de Maestría en Ciencias Ambientales, Benemérita Universidad Autónoma de Puebla]. Repositorio universitario BUAP. https://repositorioinstitucional.buap.mx/items/dd569aa6-5e20-4cf8-9b85-24d9141bdf69
Guerrero-Hernández, R., González-Gallegos, J. G., & Castro-Castro, A. (2014). Análisis florístico de un bosque de Abies y el bosque mesófilo de montaña adyacente en Juanacatlán, Mascota, Jalisco, México. Botanical Sciences, 92(4), 541-562. http://dx.doi.org/10.17129/botsci.119
Holopainen, M., & Kalliovirta, J. (2006). Modern data acquisition for forest inventories. In A. Kangas & M. Maltamo (Eds.), Forest Inventory. Methodology and Applications (pp. 343-362). Springer Dordrecht. https://doi.org/10.1007/1-4020-4381-3_21
Instituto Nacional de Estadística, Geografía e Informática. (2010). Compendio de información geográfica municipal 2010. La Magdalena Contreras. Distrito Federal. Instituto Nacional de Estadística, Geografía e Informática. https://www.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/09/09008.pdf
Jagodziński, A. M., Dyderski, M. K., Gęsikiewicz, K., & Horodecki, P. (2019). Effects of stand features on aboveground biomass and biomass conversion and expansion factors based on a Pinus sylvestris L. chronosequence in Western Poland. European Journal of Forest Research, 138, 673-683. https://doi.org/10.1007/s10342-019-01197-z
Jenkins, J. C., Chojnacky, D. C., Heath, L. S., & Birdsey, R. A. (2003). National-scale biomass estimators for United States tree species. Forest Science, 49(1), 12-35. https://doi.org/10.1093/forestscience/49.1.12
Keller, T., & Håkansson, I. (2010). Estimation of reference bulk density from soil particle size distribution and soil organic matter content. Geoderma, 154(3-4), 398-406. https://doi.org/10.1016/j.geoderma.2009.11.013
Martorell, C., & Peters, E. M. (2005). The measurement of chronic disturbance and its effects on the threatened cactus Mammillaria pectinifera. Biological Conservation, 124(2), 199-207. https://doi.org/10.1016/j.biocon.2005.01.025
Mejía-Canales, A., Franco-Maass, S., Endara-Agramont, Á. R., & Ávila-Akerberg, V. (2018). Caracterización del sotobosque en bosques densos de pino y oyamel en el Nevado de Toluca, México. Madera y Bosques, 24(3), Artículo e2431656. https://doi.org/10.21829/myb.2018.2431656
Mostacedo, B., & Fredericksen, T. S. (2000). Manual de métodos básicos de muestreo y análisis en ecología vegetal. Proyecto de Manejo Forestal Sostenible (Bolfor). https://www.bio-nica.info/Biblioteca/Mostacedo2000EcologiaVegetal.pdf
Mueller-Dombois, D., & Ellenberg, H. (1976). Aims and methods of vegetation ecology. Geographical Review, 66(1), 114-116. https://doi.org/10.2307/213332
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Borman, T., Carvalho, G., Chirico, M., De Caceres, M., … Weedon, J. (2025). Package ‘vegan’. Community ecology package (versión 2.7-2) [Software]. Comprehensive R Archive Network. https://mirror.ibcp.fr/pub/CRAN/web/packages/vegan/vegan.pdf
Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (Circular No. 939). United States Department of Agriculture. https://ia903207.us.archive.org/21/items/estimationofavai939olse/estimationofavai939olse.pdf
Pommerening, A. (2002). Approaches to quantifying forest structures. Forestry, 75(3), 305-324. https://doi.org/10.1093/forestry/75.3.305
R Development Core Team. (2024). R: A language and environment for statistical computing (Version 4.2) [Software]. R Fundación for Statistical Computing. https://www.r-project.org/
Reynolds, S. G. (1970). The gravimetric method of soil moisture determination, Part I: A study of equipment and methodological problems. Journal of Hydrology, 11(3), 258-273. https://doi.org/10.1016/0022-1694(70)90066-1
Silva-González, E., Aguirre-Calderón, O. A., Alanís-Rodríguez, E., Treviño-Garza, E. J., González-Tagle, M. A., & Corral-Rivas, J. J. (2024a). Changes in tree diversity and structure of a temperate forest under two silvicultural treatments in Durango, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 30(1), 1–17. https://doi.org/10.5154/r.rchscfa.2022.12.093
Silva-González, E., Colín, J. G., Aguirre-Calderón, O. A., Treviño-Garza, E. J., Corral-Rivas, J. J., & Manzanilla-Quijada, G. E. (2024b). Diversidad y estructura de especies arbóreas en tres tipos de vegetación forestal al sur de Durango, México. Polibotánica, (58), 103-118. https://doi.org/10.18387/polibotanica.58.7
Smyčková, M., Koutecký, T., Ujházyová, M., Ujházy, K., Verheyen, K., Volařík, D., Šebesta, J., Friedl, M., Máliš, F., & Hofmeister, J. (2024). Herb layer species richness declines with heterogeneity of the forest structure in primary beech-dominated forests while proportion of forest specialists increases. Forest Ecology and Management, 556, Article 121728. https://doi.org/10.1016/j.foreco.2024.121728
Trejo-Escareño, H. I., Salazar-Sosa, E., López-Martínez, J. D., & Vázquez-Vázquez, C. (2013). Impacto del estiércol bovino en el suelo y producción de forraje de maíz. Revista Mexicana de Ciencias Agrícolas, 4(5), 727-738. https://doi.org/10.29312/remexca.v4i5.1171
Velasco-Luis, M. U., Velázquez-Martínez, A., Hernández-de la Rosa, P., Fierros-González, A. M., & Vera-Castillo, J. A. G. (2023). Caracterización de un bosque templado en un gradiente altitudinal en Oaxaca, México. Madera y Bosques, 29(1), Artículo e2912465. https://doi.org/10.21829/myb.2023.2912465
Weemstra, M., Zambrano, J., Allen, D., & Umaña, M. N. (2021). Tree growth increases through opposing above-ground and below-ground resource strategies. Journal of Ecology, 109(10), 3502-3512. https://doi.org/10.1111/1365-2745.13729
Worku, B. B., Muluneh, M. G., & Molla, T. (2023). Influence of elevation and anthropogenic disturbance on woody species composition, diversity, and stand structure in Harego Mountain Forest, northeastern Ethiopia. International Journal of Forestry Research, 2023(1), Article 8842408. https://doi.org/10.1155/2023/8842408
Yirga, F., Marie, M., Kassa, S., & Haile, M. (2019). Impact of altitude and anthropogenic disturbance on plant species composition, diversity, and structure at the Wof-Washa highlands of Ethiopia. Heliyon, 5(8), Article e02284. https://doi.org/10.1016/j.heliyon.2019.e02284
Zepeda-Gómez, C., Estrada-Zúñiga, M. E., Burrola-Aguilar, C., Manjarrez, J., & White-Olascoaga, L. (2023). Diversidad, estructura y regeneración del bosque de Abies religiosa en una zona de hibernación de la mariposa monarca del centro de México. Madera y Bosques, 29(2), Artículo e2922488. https://doi.org/10.21829/myb.2023.2922488
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Mexicana de Ciencias Forestales

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Forestales accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Forestales recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access.
All the texts published by Revista Mexicana de Ciencias Forestales –with no exception– are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Forestales (for example, include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Forestales.
For all the above, the authors shall send the form of Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: ciencia.forestal2@inifap.gob.mx
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.
