Pinus hartwegii Lindl. forest, structure and composition along of its elevational distribution in the Nevado de Toluca

Authors

  • Griselda Chávez-Aguilar Centro Nacional de Investigación Disciplinaria en Agricultura Familiar, INIFAP. México https://orcid.org/0000-0001-9406-8871
  • Gisela Virginia Campos-Ángeles División de Estudios de Posgrado e Investigación, Instituto Tecnológico del Valle de Oaxaca. México
  • Marlin Pérez-Suárez Instituto de Ciencias Rurales y Agropecuarias, Universidad Autónoma del Estado de México (UAEM). Campus El Cerrillo. México.

DOI:

https://doi.org/10.29298/rmcf.v13i74.1257

Keywords:

altitude, diameter classes, canopy cover, tree composition

Abstract

Know mountain forest structure and composition allows understand the trees dasometric attributes and the ecosystem processes along vegetation gradients derived from elevation. We analyzed structure and composition of Pinus hartwegii forest along a 600 m gradient in the Nevado de Toluca. We established conglomerate of 1 hectare in each elevation, recording tree dasometric variables. The vertical and horizontal structure was evaluated with tree density (TD), basal area (BA), and structural parameters and indexes. Structural parameters and indices showed that P. hartwegii forest maintains its abundance and dominance along the altitudinal gradient, mainly from 3,700 to 4,000 m, where it forms monospecific forests. However, their contribution to tree structure forest decreased from 100% from 3,900 to 4,000 m, to 45% at 3,500 m. The dasometric parameters indicated higher TD in individuals of diameter classes of 5-15 cm was higher below 3,800 m, indicating that regeneration can be more limited at higher altitudes, due to irregular extraction of trees. We concluded that the structural composition of the P. hartwegii forest presents important changes and varies by elevation, which could be a result a result of environment-society interaction through land use management associated to the elevation, which compromise the structure and function of ecosystem. We recommended that altitude could be incorporated as a determining variable in management plans for high mountain forests.

Downloads

Download data is not yet available.

Author Biography

Griselda Chávez-Aguilar, Centro Nacional de Investigación Disciplinaria en Agricultura Familiar, INIFAP. México

Bióloga por la Universidad Nacional Autónoma de México (UNAM), con maestría y un doctorado en Ciencias Forestales por el Colegio de Postgraduados. Con dos estancias posdoctorales, en la Universidad Autónoma del del Estado de México (UAMex). Cuento con experiencia en docencia, dirección de tesis de licenciatura y publicaciones de artículo de investigaci n en revistas indexadas en JCR (Journal of Citation Reports) y en el Índice de Revistas Mexicanas de Investigación Científica del CONACyT. Mis lineas de investigan radican en entender la dinámica de los bosques templados bajo manejo forestal, para almacenar y secuestrar carbono atmosférico en sus diversos reservorios, principalmente suelo; y con diversos factores bióticos y abióticos que pueden controlar esta dinámica. He participado en diversos proyectos de investigación con instituciones como el Instituto Potosino de Investigación Científica y Tecnológica (IPICyT) en San Luis Potosí,  y en la UAEMex, en Toluca. A nivel de licenciatura, ha impartido diversos cursos en el  rea forestal y de biología, en el Instituto Tecnológico Superior de Zacapoaxtla y en la UAEMex. A nivel de posgrado, impartí cursos en el Instituto de Ciencias Agropecuarias y Rurales (ICAR) y en el Centro de Investigación en Recursos Bióticos (CIRB) y en la Facultad de Biología. Actualmente me desempeño como investigadora titular C en el Centro Nacional de Investigación Disciplinaria Agricultura Familiar (CENID-AF), del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). En donde realiza investigaciones enfocadas al establecimiento y manejo de sistemas agroforestales como alternativa de producción (alimentos y forrajes) y en la recuperación de diversos servicios ecosistémicos en zonas áridas y semiáridas del centro y norte del pa s. Paralelamente, sus estudios se enfocan en estudiar diversos procesos biológicos del suelo, como la din´ámica en los almacenes de carbono, el reciclaje de nutrientes, la composición y distribución de la biomasa microbiana y la relación que guardan estos procesos entre sí; con la finalidad de generar herramientas para la conservación y recuperación de suelos agrícolas. Es colaboradora en el proyecto de investigación: “Evaluación del sistema agroforestal Maíz-Inga como alternativa de recuperación de suelos degradados del municipio de Villaflores, Chiapas”, financiado por The Nature Conservancy e INIFAP. En este proyecto coadyuvo en la identificación de los grupos funcionales de microorganismos del suelo que permitan la recuperación de suelos degradados de la región.

References

Báez, S. y S. Collins. 2008. Shrub invasion decreases diversity and alters community stability in norhthern Chihuahuan Desert plant communities. PLoS ONE 3(6):1-8. Doi: 10.1371/journal.pone.0002332 DOI: https://doi.org/10.1371/journal.pone.0002332

Báez, S., A. Malizia, J. Carilla, C. Blundo, M. Aguilar, N. Aguirre, Z. Aquirre, E. Álvarez, F. Cuesta y Á. Duque. 2015. Large-scale patterns of turnover and basal area change in Andean forests. PloS one 10:e0126594. Doi: 10.1371/journal.pone.0126594 DOI: https://doi.org/10.1371/journal.pone.0126594

Bhutia, Y., R. Gudasalamani, R. Ganesan y S. Saha. 2019. Assessing Forest Structure and Composition along the Altitudinal Gradient in the State of Sikkim, Eastern Himalayas, India. Forests 10(8):633. Doi: 10.3390/f10080633 DOI: https://doi.org/10.3390/f10080633

Calderón de Rzedowski, G. y J. Rzedowski. 2005. Flora fanerogámica del Valle de México. 2ª ed. Instituto de Ecología, A.C. y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Pátzcuaro (Michoacán). 1406 p.

Carrillo-Arizmendi, L., M. Pérez-Suárez y J. J. Vargas-Hernández. 2022. México de montañas, la importancia de incorporar la elevación en los estudios ecológicos. Ciencia y Mar XXVI(76):87–95. http://cienciaymar.mx/Revista/index.php/cienciaymar/issue/view/78/DIV76_2 (15 febrero de 2022).

Challenger, A. y J. Soberón. 2008. Los ecosistenas terrestres de México. In: Soberón, J., G. Halffter y J. Llorente-Bousquets (comp.). Capital natural de México. Vol. I: Conocimiento actual de la biodiversidad. Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad (Conabio), México, D.F., México. pp. 87–108.

Comisión Nacional Forestal (CONAFOR). 2012. Manual y procedimientos para el muestreo de campo, re-muestreo del Inventario Nacional Forestal y de Suelos 2012. SEMARNAT. México. 140 p. https://www.climateactionreserve.org/wp-content/uploads/2011/03/Sampling_Manual-_Remuestreo-_Conafor_INFyS.pdf (1 noviembre de 2016).

Corella-Justavino, J. F., J. I. Valdez-Hernández, V. M. Cetina-Alcalá., F. V. González-Cossio., A. Trinidad-Santos. y J. R. Aguirre-Rivera. 2001. Estructura forestal de un bosque de mangles en el noreste, del estado de Tabasco, México. Revista Mexicana de Ciencias Forestales 26(90):73‒102. http://cienciasforestales.inifap.gob.mx/index.php/forestales/article/view/914 (12 noviembre de 2021).

DOF (Diario Oficial de la Federación). 2016. Acuerdo por el que se da a conocer el Resumen del programa de Manejo del Área Natural Protegida con categoría de Protección de Flora y Fauna Nevado de Toluca. 21 de octubre de 2016. http://www.dof.gob.mx/nota_detalle.php?codigo=5457780&fecha=21/10/2016 (1 enero de 2017).

Durán-Medina, E., J. F. Mas y A. Velázquez. 2005. Land use/cover change in community-based forest management regions and protected areas in Mexico. In: D. B. Bray, L. Merino-Pérez y D. Barry (Eds.), The Community Forests of Mexico (215-238 pp.) Texas:University of Texas. https://web.ciidiroaxaca.ipn.mx/eduranm/sites/web.ciidiroaxaca.ipn.mx.eduranm/files/pdf/Cap.10%20(Texas%20Press).pdf (6 septiembre de 2022). DOI: https://doi.org/10.7560/706378-012

Endara-Agramont, A. R. 2007. Estructura forestal de Pinus hartwegii en el Parque Nacional Nevado de Toluca; Tesis de Maestría. Universidad Autónoma del Estado de México. Estado de México, México. 76 p.

Endara-Agramont, A. R., S. Franco-Maass, G. Nava-Bernal, J. I. Valdez-Henández y T. S. Fredericksen. 2012. Effect of human disturbance on the structure and regeneration of forests in the Nevado de Toluca National Park, Mexico. Journal of Forestry Research 23(1):39–44. Doi: 10.1007/s11676-012-0226-8 DOI: https://doi.org/10.1007/s11676-012-0226-8

Farjon, A. y D. Filer. 2013. An Atlas of the World's Conifers: An Analysis of their Distribution, Biogeography, Diversity and Conservation Status. Ed. Brill. Leiden, The Netherlands. 524 p. DOI: https://doi.org/10.1163/9789004211810

Farjón, A., J. A. Pérez de la Rosa y B. T. Styles. 1997. Guía de Campo de los Pinos de México y América Central. The Royal Botanic Gardens, Kew producido en auspicio con el Instituto Forestal de Oxford, Universidad de Oxford. 151 p.

Franco-Maass, S., H. H. Regil, C. González y G. Nava-Bernal. 2006. Cambio de uso del suelo y vegetación en el Parque Nacional Nevado de Toluca, México, en el periodo 1972-2000. Investigaciones Geográficas 61:38–57. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-46112006000300004 (3 enero de 2022). DOI: https://doi.org/10.14350/rig.29996

Gadow, K. V., C. Y. Zhang, C. Wehenkel, A. Pommerening, J. Corral-Rivas, M. Korol, S. Myklush, G. Ying-Hui, A. Kiviste y X. H. Zhao. 2012. Forest Structure and Diversity. In: Pukkala, T. y K. V. Gadow (eds.). Continuous Cover Forestry, Managing Forest Ecosystems, 23. pp. 29–83. Doi: 10.1007/978-94-007-2202-6 DOI: https://doi.org/10.1007/978-94-007-2202-6_2

García, E. 2004. Modificaciones al sistema de clasificación climática Köppen. Instituto de Geografía, Universidad Nacional Autónoma de México. Serie Libros, No. 6. 5a ed. México, D.F., México. 92 p.

Girardin, C. A. J., Y. Malhi, L. E. O. C. Aragão, M. Mamani, W. Huaraca-Huasco, L. Durand, K. J. Feely, J., Rapp, J., E. Silva-Espejo, M. Silman, N. Salinas y R. J. Whittaker. 2010. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology 16:3176–3192. Doi: 10.1111/j.1365-2486.2010.02235.x DOI: https://doi.org/10.1111/j.1365-2486.2010.02235.x

Gómez-Díaz, J.A. y F. Villalobos. 2020. Montañas: cómo se definen y su importancia para la biodiversidad y la humanidad. Ciencia ergo-sum 27(2):e88. Doi: 10.30878/ces.v27n2a9 DOI: https://doi.org/10.30878/ces.v27n2a9

Granados-Ramírez, G., A. Toscana-Aparicio y A. Villaseñor-Franco. 2018. Recategorización del Nevado de Toluca Elementos escénicos y turismo. Teorís y Praxis 26:36-66. http://www.teoriaypraxis.uqroo.mx/doctos/numero26/Granados_etal.pdf (10 septiembre de 2022).

Homeier, J., S. W. Breckle, S. Günter, R. T. Rollenbeck y C. Leuschner. 2010. Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian Montane Rain Forest. Biotropica 42(2):140–148. Doi: 10.1111/j.1744-7429.2009.00547.x DOI: https://doi.org/10.1111/j.1744-7429.2009.00547.x

Hu, M., A. Lehtonen, F. Minunno y A. Mäkelä. 2020. Age effect on tree structure and biomass allocation in Scot pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.). Annals of Forest Science 77:90. Doi: 10.1007/s13595-020-00988-4/ DOI: https://doi.org/10.1007/s13595-020-00988-4

Iglesias, L., L. J. Alba y J. L. Enríquez. 1999. Estrategias para la conservación de Pinus hartwegii Lindl. en la región de Perote, Veracruz. Monte Bravo 4-5:20–22. https://cuadernosdebiodiversidad.ua.es/article/view/2000-n4-estrategias-para-la-conservacion-de-la-poblacion-de-pinus-hartwegii-lindl-en-la-region-del-perote-veracruz (11 de febrero de 2022). DOI: https://doi.org/10.14198/cdbio.2000.04.01

Jafari, S. M., S. Zarre y S. K. Alavipanah. 2013. Woody species diversity and forest structure from lowland to montane forest in Hyrcanian forest ecoregion. Journal of Mountain Science 10:609–620. Doi: 10.1007/s11629-013-2652-2 DOI: https://doi.org/10.1007/s11629-013-2652-2

Jobbágy, E. G. y R. B. Jackson. 2000. The Vertical Distribution of Soil Organic Carbon and its Relation to Climate and Vegetation. Ecological Applications 10(2):423–436. Doi:10.1890/1051-0761(2000)010[0423:tvdoso]2.0.c DOI: https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

Körner, C. y J. Paulsen. 2004. A world-wide study of high altitude treeline temperatures. Journal of Biogeography 31(5):713–732. Doi: 10.1111/j.1365-2699.2003.01043.x DOI: https://doi.org/10.1111/j.1365-2699.2003.01043.x

Manzanilla-Quiñones, U., Ó. A. Aguirre-Calderón, J. Jiménez-Pérez, E. J. Treviño-Garza y J. I. Yerena-Yamallel. 2019. Distribución actual y futura del bosque subalpino de Pinus hartwegii Lindl. en el Eje Neovolcánico Transversal. Madera y Bosques 25(2):e2521804. Doi: 10.21829/myb.2019.2521804 DOI: https://doi.org/10.21829/myb.2019.2521804

McElhinny, C., P. Gibbons, C. Brack y J. Bauhus. 2005. Forest and woodland stand structural complexity: its definition and measurement. Forest Ecology Management 218:1–24. Doi: 10.1016/j.foreco.2005.08.034 DOI: https://doi.org/10.1016/j.foreco.2005.08.034

Mostacedo, B. y T. S. Fredericksen. 2000. Manual de Métodos Básicos de Muestreo y Análisis en Ecología Vegetal. Ed. BOLFOR. Santa Cruz, Bolivia. 87 p. https://pdf.usaid.gov/pdf_docs/PNACL893.pdf (10 diciembre de 2018).

Pérez-Suárez, M., J. E. Ramírez-Albores, J. J. Vargas-Hernández y F. U. Alfaro-Ramírez. 2021. A review of the knowledge of Hartwegʼs Pine (Pinus hartwegii Lindl.): current situation and the need for improved future projections. Trees. Doi: 10.1007/s00468-021-02221-9 DOI: https://doi.org/10.1007/s00468-021-02221-9

Ramírez-Contreras, A.y D. A. Rodríguez-Trejo. 2009. Plantas nodriza en la reforestación con Pinus hartwegii Lindl. Revista Chapingo serie ciencias forestales y del ambiente 15:43–48. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-40182009000100005 (30 enero de 2022).

Ramírez-Huerta, L., C. M. López-Guzmán, V. J. Arriola-Padilla, Z. Trejo-Sandoval, R. Pérez-Miranda y C. L. Jiménez-Sierra. 2016. La investigación en las Áreas Naturales Protegidas de la Región Centro y Eje Neovolcánico Transversal de México. Áreas Naturales Protegidas Scripta 2(2):37–66. Doi: 10.18242/anpscripta.2016.02.02.02.0003 DOI: https://doi.org/10.18242/anpscripta.2016.02.02.02.0003

Royo, A. A. y W. P. Carson. 2006. On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession. Canadian Journal of Forest Research 36(6):1345–1362. Doi: 10.1139/X06-025 DOI: https://doi.org/10.1139/x06-025

Seidler, R. 2017. Patterns of biodiversity change in anthropogenically altered forests. Reference Module in Life Sciences 1–17. Doi: 10.1016/b978-0-12-809633-8.02186-5 DOI: https://doi.org/10.1016/B978-0-12-809633-8.02186-5

Sharma, J., S. Upgupta, M. Jayaraman, R. K. Chaturvedi, G. Bala y N. H. Ravindranath. 2017. Vulnerability of Forests in India: a National Scale Assessment. Environmental Management 60:544–553. Doi: 10.1007/s00267-017-0894-4 DOI: https://doi.org/10.1007/s00267-017-0894-4

Statistical Analysis System. 2009. SAS© Web Report Studio 4.2; User´s Guide, Cary, NC; SAS Institute Inc. 5136 p.

Unger, M., J. Homeier y C. Leuschner (2012). Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia, 170(1), 263–274. Doi: 10.1007/s00442-012-2295-y DOI: https://doi.org/10.1007/s00442-012-2295-y

Waddell, E. H., L. F. Banin, S. Fleiss, J. K. Hill, M. Hughes, A. Jelling, K. L. Yeong, B. B. Ola, A. B. Sailim, J. Tangah y D. S. Chapman. 2020. Land-use change and propagule pressure promote plant invasions in tropical rainforest remnants. Landscape Ecology. Doi: 10.1007/s10980-020-01067-9 DOI: https://doi.org/10.1007/s10980-020-01067-9

Published

2022-10-31

How to Cite

Chávez-Aguilar, Griselda, Gisela Virginia Campos-Ángeles, and Marlin Pérez-Suárez. 2022. “Pinus Hartwegii Lindl. Forest, Structure and Composition Along of Its Elevational Distribution in the Nevado De Toluca”. Revista Mexicana De Ciencias Forestales 13 (74). México, ME:54-76. https://doi.org/10.29298/rmcf.v13i74.1257.

Issue

Section

Scientific article

Similar Articles

You may also start an advanced similarity search for this article.