Revista Mexicana de Ciencias Forestales Vol. 11 (61)
Septiembre – Octubre (2020)
DOI: https://doi.org/10.29298/rmcf.v11i61.730 Article Composición botánica del matorral sarcocaule en Baja California Sur durante las estaciones húmeda y seca Botanical composition of the sarcocaule scrub in the state of Baja California Sur during the wet and dry seasons |
Emanuel Junco Carlón1
Humberto González Rodríguez1*
José Ángel Armenta Quintana2
Israel Cantú Silva1
Andrés Eduardo Estrada Castillón1
Mauricio Cotera-Correa1
Marco Vinicio Meza-Gómez3
Fecha de recepción/Reception date: 3 de marzo de 2020
Fecha de aceptación/Acceptance date: 27 de julio de 2020
_______________________________
1Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León. México
2Departamento de Ciencia Animal y Conservación del Hábitat, Universidad Autónoma de Baja California Sur. México.
3Facultad de Economía, Universidad Autónoma de Nuevo León. Nuevo León
*Autor por correspondencia; correo- e: humberto.gonzalezrd@uanl.edu.mx
Resumen
El objetivo del presente estudio fue determinar la composición florística del matorral sarcocaule del desierto sonorense en un área de 800 ha dentro de una propiedad ejidal ubicada en los límites de la ciudad de La Paz, Baja California Sur. El muestreo se realizó durante la época de lluvias (septiembre-noviembre de 2018) y a finales de la épocade sequía (mayo-agosto de 2019), por medio de 20 cuadrantes de 5 m × 5 m. Se identificaron 29 especies de 1 634 individuos, entre las dos temporadas y se consideraron las variables de altura y diámetro de copa de cada ejemplar por especie, para determinar abundancia (Ar), dominancia (Dr), frecuencia (Fr), índice de valor de importancia (IVI) y los índices de Shannon para la diversidad de especies (H´) e índice de Margalef para la riqueza de especies (S´). Durante la época de lluvias, se observó a Jatropha cinerea como dominante Dr=7.15 % y con mayor IVI (10.7 %); Turnera diffusa fue la más abundante con Ar=3.2. En cambio, para la temporada seca, fue Prosopis articulata la especie dominante Dr=9.29 y con mayor IVI (12.51 %); Mammillaria armillata fue la más abundante, con Ar=4.56. Los índices de (H’) y (S’) durante la época de lluvias fueron 3.36 y 8.09, respectivamente, con diferencia entre ellos (p≤0.05) al compararlos con los de la temporada seca (2.88 y 4.88, respectivamente), debido a la ausencia de taxones y disminución del número de individuos, en relación con la época húmeda.
Palabras clave: Composición florística, desierto Sonorense, épocas de lluvias, indicadores ecológicos, La Matanza, sequía.
Abstract
The aim of the present study was to determine the floristic composition of the sarcocaule scrub of the Sonoran desert in an area of 800 ha within an ejidal property located in the limits of the city of La Paz, Southern Baja California. Sampling was carried out during the rainy season (September-November 2018) and at the end of the dry season (May-August 2019), using 20 quadrants of 5 m × 5 m. 29 species of 1 634 individuals were identified, between the two seasons and the variables of height and crown diameter of each specimen by species were considered, in order to determine abundance (Ar), dominance (Dr), frequency (Fr), importance value index (IVI) and the Shannon index for species diversity (H´) and the Margalef index for species richness (S´). During the rainy season, Jatropha cinerea is observed as the dominant species Dr = 7.15 % and with the highest IVI (10.7 %) and Turnera diffusa as the most abundant with Ar = 3.2. On the other hand, for the dry season, Prosopis articulata is the dominant species Dr = 9.29 and with the highest IVI (12.51 %) and Mammillaria armillata as the most abundant, with Ar = 4.56. The indices of H' and S' during the rainy season were 3.36 and 8.09, respectively, with a difference between them (p≤0.05) when compared with those of the dry season (2.88 and 4.88, respectively), due to the absence of species and decrease in the number of individuals, than in the wet season.
Key words: Floristic composition, Sonoran desert, rainy season, ecological indicators, La Matanza, drought.
Introduction
Northern Mexico is covered by the deserts of North America, such as those of southern Arizona and California, which extend towards the states of Sonora, Chihuahua, Baja California and Baja California Sur, where the Chihuahuense, Sonorense and Mojave deserts are located (Whorley and Kenagy, 2007). The climate and soil characteristics of these places make it possible for the bushes to exhibit a different botanical composition with high diversity and richness of species (Cabrera, 2009).
There are three types of ecosystems in the state of Baja California Sur: pine-oak forest, tropical deciduous forest and sarcocaule scrub, this type of scrub being a variation of the xerophilous scrub (Rzedowski, 2006), characteristic of the areas arid; the latter is presented as the dominant one. The sarcocaule scrub covers a large part of the entity's territory and is located on the plains of areas near the city of La Paz. Among the dominant species of this type of vegetation stand out Jatropha cinerea (Ortega) Muell.-Arg. (lomboy), J. cuneata Wiggins & Rollins (matacora), Bursera microphylla A. Gray (torote), Stenocereus gummosus (Engelm.) A. Gibson & K. E. Horak (pitaya dulce), Larrea divaricata Cav. (jarilla) and Fouquieria diguetti (Tiegh.)I. M. Johnst. (palo adán) (Velderrain et al., 2010). The vegetation is characterized by the dominance of shrub and tree plants, mainly legumes, particularly the Agavaceae and Cactaceae (succulent) and Burseraceae and Euphorbiaceae (semi-succulent) families with twisted stems and branches with medium presence of exfoliating bark (León et al., 2000). This great diversity of plants is grazed by livestock in this region of the country.
To know the structural characteristics of the vegetation of a forest ecosystem is important, since the distribution of the species and their abundance is not similar between the different seasons of the year from the influence of some edaphic or climatic factor. In this way, the information generated can be a means to make proposals for management, conservation and regeneration, in reduced areas or fragments of the scrub (Rosenzweig, 1995). Different studies have been carried out that refer to the botanical composition of sarcocaule scrub (León et al., 2000; Velderrain et al., 2010); however, there are other investigations that have focused on the functional traits of different species and their phenology in this type of vegetation (Maya and Arriaga, 1996; Perea et al., 2005).
The wide diversity of plants that establish in the vegetation of northeast Mexico occurs in response to extreme physical factors such as recurring droughts and intense temperatures in addition to human activities such as land use change and overgrazing (Reid et al., 1990), which favor important changes in its structure and composition. In this context, the aim of the present investigation was to know the floristic composition of the sarcocaule scrub present in the Palmar de Abajo Ranch in the town of La Matanza, at two different times of the year and its relationship with the climate. It was hypothesized that the presence of families is subject to the change of season. A difference in species presence and effects on the abundance, coverage, richness and diversity of plant varieties in the scrub would be expected.
Materials and Methods
Study area
This research was carried out in the area known as Rancho Palmar de Abajo, located in La Matanza, La Paz municipality, Baja California Sur, between 23°38 ́02 ́ ́ N and 110°17 ́05 ́ ́O (Figure 1). The climate of this area is desert-dry with average temperatures of 21.2 °C and temperatures of 9 °C in winter; the rainy season displays from July to September, but rains can occur in winter (Ramírez et al., 2011). The dry season is from February to June (Troyo et al., 2014).
Figure 1. Location of the Rancho Palmar property, La Paz municipality, Baja California Sur (The study area is marked in red in the polygon).
In the study area, the soil type is Regosol, and, for the mostly covered by the sarcocaule scrub (INEGI, 2009). In general, the land is used in vegetable agriculture and the sowing of fodder for livestock.
Sampling method
The quadrant method was selected (Ferro-Díaz, 2015; Pequeño et al., 2017) to describe the arboreal, shrub and herbaceous vegetation at the sampling site. Twenty 5 m × 5 m quadrants were delimited with metal stakes at an approximate distance of 100 m between them; its geoposition was taken at the vertex of each one of them with a Garmin Oregon 650 GPS. Inside each quadrant, the following data were taken: number of species and of individuals per species, height (cm) crown width (cm) and crown length (cm) of each plant with a 10 m Truper tape.
The results thus measured were used to determine the ecological indicators of Relative Abundance (ARi), Relative Dominance (DRi) and Relative Frequency (FRi) of each species in the 20 quadrants. These data were used in the calculation of the Importance Value Index (IVI), which obtains values on a scale from 0 to 100 expressed in per cent (García and Zavala, 2018). The formulas for each indicator are shown below (Marroquín et al., 2017):
Where:
ARi = Relative abundance of the i species, in respect to total abundance
Ai = Number of individuals of the i species
= Sum of the number of individuals of all species
S = Sampling area (ha)
Where:
DRi =Relative dominance of the i species, in respect to total dominance
Di = Absolute dominance of individuals
= Sum of the dominance of individuals of all species
S = Area (ha)
Where:
FRi = Relative frequency of the i species, in respect total frequence
Fi = Number of quadrants in which the species is present
= Sum of the number of quadrants in which all the species are present
Pi = Number of quadrants in which the i species is present
NS = Total number of sampling sites
Where:
IVI= Importance Value Index
ARi = Relative abundance of the i species in respect to total abundance
DRi = Relative dominance of the i species in respect to total dominance
FRi = Relative frequency of the i species in respect to total frequency
In the same way, the Margalef index (S´) was determined to know the diversity of species and the Shannon-Wienner index (H’) for species richness (Marroquín et al., 2017) and finally the Jaccard similarity index between the quadrants sampled in the two periods (Ij) (Reyes and Torres-Florez, 2009), using the following formulas:
Where:
S´= Margalef index
S = Number of species
ln = Natural logarithm
N = Total number of individuals
Where:
H’ = Shannon-Wienner diversity índex
S = Number of present species
ln = Natural logarithm
pi = Rate of the i species
ni= Number of individuals of the i species
N= Total number of individuals
Where:
Ij = Jaccard similarity index
a = Number of species present at the A quadrant
b = Number of species present at the B quadrant
c = Number of species present at both A and B quadrants
Samplings were carried out in the same quadrants, in the wet season (September 28 to November 2, 2018) and dry (May 27 to August 5, 2019); It should be noted that rain events were delayed during these activities.
Data analysis
The information was analyzed using a multivariate test to detect the differences between each season (wet and dry), coverage and species similarity in each quadrant, using the Past 3.2 program (Medina et al., 2017). For the statistical analysis of the data, the SPSS version 22.0 package was used (IBM, 2013), using the non-parametric test for Wilcoxon-dependent samples, for the variables of Abundance (N ha-1), Dominance (m2 ha-1 ), Species diversity (H´) and Species richness (S´) in order to detect differences between the wet and dry seasons (Ramírez et al., 2013). Each one of the species and families sampled throughout the investigation, were corroborated with what was published in the work of Rebman and Roberts (2012) referring to the botany of the Baja California peninsula.
Results
Floristic composition
A total of 1 466 individuals of 60 species and 27 families were gathered during the wet season. The largest number of species was recorded for the families Asteraceae and Fabaceae (8), followed by Cactaceae (7), Euphorbiaceae (6), Solanaceae and Rhamnaceae (3 each), Burseraceae, Amaranthaceae, Acanthaceae and Malvaceae (2 each), the other families present a single species, for the wet season. In the dry season, a total of 168 individuals from 27 species and 14 families were recorded, which were distributed as follows: from highest to lowest diversity: Cactaceae (7), Euphorbiaceae (4), Fabaceae (4) and Malvaceae (2), the other families showed only one species per family.
Ecological indicators
Table 1 orders the results obtained in the two seasons of the year, and Table 2 lists the families and life forms of each species recorded in the research.
Table 1. List of observed species, with their respective values of Relative Abundance, Relative Dominance, Relative Frequency and Importance Value Index, at the site known as Palmar de Abajo Ranch, during the wet and dry seasons.
Vegetal species | Wet season | Dry season | ||||||
Ar (%) | Dr (%) | Fr (%) | IVI (%) | Ar (%) | Dr (%) | Fr (%) | IVI (%) | |
Acacia farnesiana (L.) Willd. | 0.136 | 0.109 | 0.575 | 0.82 | 0.595 | 0.659 | 1.220 | 2.474 |
Adelia virgata Brandegee | 0.455 | 1.844 | 1.054 | 3.352 | 0.794 | 1.296 | 0.813 | 2.903 |
Agave deserti Gentry | 0 | 0 | 0 | 0 | 0.397 | 0.050 | 0.407 | 0.853 |
Amaranthus fimbriatus (Torr.) Benth. | 0.182 | 0.002 | 0.479 | 0.663 | 0 | 0 | 0 | 0 |
Ambrosia bryantti (Curran) Payne | 0.023 | 0 | 0.096 | 0.119 | 0 | 0 | 0 | 0 |
Antigonon leptopus Hook & Arn. | 0.659 | 2.459 | 1.149 | 4.268 | 0 | 0 | 0 | 0 |
Bahiopsis chenopodina (Greene) E.E.Schill. & Panero | 0.114 | 0.083 | 0.192 | 0.389 | 0 | 0 | 0 | 0 |
Bebbia juncea (Benth.) Greene | 0.045 | 0.003 | 0.096 | 0.144 | 0 | 0 | 0 | 0 |
Boerhavia coulteri (Hook. F.) S. Watson | 2.206 | 0.757 | 1.245 | 4.207 | 0 | 0 | 0 | 0 |
Bourreria sonorae S. Watson | 0.068 | 0.134 | 0.192 | 0.394 | 0.397 | 0.537 | 0.407 | 1.340 |
Bursera microphylla A. Gray | 0.75 | 0.213 | 1.149 | 2.113 | 0 | 0 | 0 | 0 |
Bursera odorata Brandegee | 0.25 | 1.074 | 0.383 | 1.707 | 0 | 0 | 0 | 0 |
Calliandra californica (Benth.) D. Gibs. | 0.546 | 0.509 | 0.575 | 1.629 | 0 | 0 | 0 | 0 |
Celosia floribunda A. Gray | 0.023 | 0.002 | 0.096 | 0.12 | 0 | 0 | 0 | 0 |
Chamaesyce polycarpa (Benth.) Millsp. ex Parish | 1.182 | 0.125 | 0.862 | 2.169 | 0 | 0 | 0 | 0 |
Cnidoscolus angustidens Torr. | 0.296 | 0.379 | 0.575 | 1.25 | 0.992 | 0.272 | 1.220 | 2.484 |
Colubrina glabra S. Watson | 0.091 | 0.327 | 0.192 | 0.609 | 0 | 0 | 0 | 0 |
Condalia globosa I.M. Johnston | 0.705 | 0.395 | 0.287 | 1.388 | 0 | 0 | 0 | 0 |
Cryptostegia grandiflora Roxb. ex R.Br. | 0.296 | 0.051 | 0.287 | 0.634 | 0 | 0 | 0 | 0 |
Cylindropuntia cholla (Engelm. & Bigelow) F.M. Knuth | 0.409 | 0.393 | 1.149 | 1.952 | 2.579 | 2.217 | 4.065 | 8.862 |
Cylindropuntia molesta (Brandegee) F.M.Knuth | 0.091 | 0.151 | 0.192 | 0.433 | 0.992 | 1.193 | 0.813 | 2.998 |
Cyperus hermaphroditus (Jacq.) Standl. | 0.114 | 0.01 | 0.096 | 0.219 | 0 | 0 | 0 | 0 |
Cyrtocarpa edulis Standl. | 0.296 | 0.318 | 0.766 | 1.38 | 0.397 | 0.097 | 0.407 | 0.900 |
Datura discolor Bernh. | 0.023 | 0.002 | 0.096 | 0.12 | 0 | 0 | 0 | 0 |
Euphorbia californica Boiss. | 2.683 | 0.603 | 0.958 | 4.243 | 1.984 | 0.101 | 0.407 | 2.491 |
Ferocactus chrysacanthus (Orcutt) Britton & Rose | 0.045 | 0.001 | 0.096 | 0.142 | 0.595 | 0.033 | 0.813 | 1.441 |
Fouquieria diguetti (Tiegh.) I. M. Johnst. | 0.659 | 2.33 | 1.341 | 4.331 | 0.198 | 1.017 | 0.407 | 1.621 |
Haematoxylon brasiletto H. Karst. | 0.091 | 0.823 | 0.192 | 1.105 | 0 | 0 | 0 | 0 |
Ibervillea sonorae (S. Watson) Green | 0.023 | 0 | 0.096 | 0.119 | 0 | 0 | 0 | 0 |
Ipomea meyeri G.Don | 0.091 | 0.081 | 0.192 | 0.364 | 0 | 0 | 0 | 0 |
Ipomopsis tenuifolia (A. Gray) V. Grant | 0.477 | 0.047 | 0.383 | 0.908 | 0 | 0 | 0 | 0 |
Jatropha cinerea (Ortega) Muell.-Arg. | 1.728 | 7.155 | 1.82 | 10.70 | 0 | 0 | 0 | 0 |
Jatropha cuneata Wiggins & Rollins | 0.841 | 1.297 | 0.575 | 2.713 | 0 | 0 | 0 | 0 |
Karwinskia humboldtiana Zucc. | 0.045 | 0.27 | 0.096 | 0.411 | 0 | 0 | 0 | 0 |
Krameria parvifolia Benth. | 0.136 | 0.409 | 0.383 | 0.929 | 0.794 | 1.431 | 1.220 | 3.444 |
Lippia palmeri S. Watson | 1.933 | 1.502 | 1.054 | 4.489 | 0 | 0 | 0 | 0 |
Lycium brevipes Benth. | 0.227 | 0.641 | 0.575 | 1.444 | 0.595 | 1.212 | 0.813 | 2.621 |
Mammillaria armillata K.Brandegee | 2.478 | 0.014 | 1.533 | 4.025 | 4.563 | 0.027 | 2.846 | 7. 436 |
Melochia tomentosa L. | 0.296 | 0.202 | 0.862 | 1.36 | 1.190 | 0.213 | 1.626 | 3.029 |
Merremia aurea (Kellogg) O'Donell | 0.159 | 0.104 | 0.383 | 0.646 | 0 | 0 | 0 | 0 |
Mimosa distachya Cav. Vent. | 0.091 | 0.032 | 0.192 | 0.315 | 0.794 | 0.154 | 0.407 | 1.354 |
Olneya tesota A. Gray. | 0.114 | 0.187 | 0.479 | 0.78 | 0.198 | 0.314 | 0.407 | 0.919 |
Pachycereus pringlei (S. Watson) Britton & Rose | 0.296 | 0.407 | 0.575 | 1.277 | 2.183 | 0.363 | 2.439 | 4.985 |
Parkinsonia florida (Benth. ex A. Gray) S. Watson | 0.023 | 0.076 | 0.096 | 0.195 | 0 | 0 | 0 | 0 |
Pectis rusbyi Greene ex A. Gray | 1.432 | 0.038 | 0.862 | 2.333 | 0 | 0 | 0 | 0 |
Perityle californica Benth. | 0.045 | 0.005 | 0.096 | 0.146 | 0 | 0 | 0 | 0 |
Perityle incompta Brandegee | 0.023 | 0.017 | 0.096 | 0.135 | 0 | 0 | 0 | 0 |
Porophyllum crassifolium S.Watson | 0.591 | 0.367 | 0.862 | 1.82 | 0 | 0 | 0 | 0 |
Portulaca halimoides L. | 2.024 | 0.03 | 0.287 | 2.341 | 0 | 0 | 0 | 0 |
Proboscidea altheifolia (Benth.) Decne. | 0.045 | 0.026 | 0.192 | 0.263 | 0 | 0 | 0 | 0 |
Prosopis articulata S. Watson | 0.182 | 1.948 | 0.575 | 2.705 | 1.19 | 9.295 | 2.033 | 12.51 |
Ruellia californica I.M. Johnst. | 2.501 | 2.519 | 2.012 | 7.032 | 4.167 | 4.848 | 3.252 | 12.26 |
Rynchosia pyramidalis (Lam.) Urb. | 0.273 | 0.464 | 0.096 | 0.833 | 0 | 0 | 0 | 0 |
Sida xanti A. Gray | 0.455 | 0.042 | 0.958 | 1.454 | 0.198 | 0.877 | 0.407 | 1.482 |
Solanum hindsianum Benth. | 0.432 | 0.266 | 0.575 | 1.272 | 1.389 | 0.068 | 1.626 | 3.083 |
Sonchus oleraceus L. | 0.136 | 0.009 | 0.287 | 0.433 | 0 | 0 | 0 | 0 |
Stenocereus gummosus (Engelm.) A.Gibson &y K.E.Horak | 0.364 | 0.78 | 0.766 | 1.911 | 2.778 | 4.621 | 2.846 | 10.24 |
Stenocereus thurberi (Engelm.) Buxb. | 0.068 | 0.328 | 0.287 | 0.684 | 0.397 | 1.256 | 0.813 | 2.466 |
Tribulus terrestris L. | 0.136 | 0.048 | 0.287 | 0.471 | 0 | 0 | 0 | 0 |
Turnera diffusa Willd. ex Schult. | 3.206 | 0.916 | 1.341 | 5.463 | 2.778 | 0.4 | 1.22 | 4.398 |
Vallesia glabra (Cav.) Link | 0 | 0 | 0 | 0 | 0.198 | 0.006 | 0.407 | 0.611 |
Yucca valida Brandegee | 0.023 | 0.009 | 0.096 | 0.127 | 0 | 0 | 0 | 0 |
Total | 33.33 | 33.33 | 33.34 | 100 | 33.33 | 33.33 | 33.34 | 100 |
Ar = Relative abundance (%), Dr = Relative dominance (%), Fr = Relative frequency (%), IVI = Importance Value Index (%).
Table 2. Floristic relationship ordered by family type, species and way of life.
Family | Species | Life form |
Acanthaceae | Ruellia californica I.M. Johnst. | Herb |
Agavaceae | Yucca valida Brandegee | Succulent |
Amaranthaceae | Amaranthus fimbriatus (Torr.) Benth. | Herb |
Celosia floribunda A.Gray | Shrub | |
Anacardiaceae | Cyrtocarpa edulis Standl. | Succulent |
Apocynaceae | Vallesia glabra (Cav.) Link | Shrub |
Asclepiadaceae | Criptostegia grandiflora | Climbing |
Asparagaceae | Agave deserti Gentry | Succulent |
Asteraceae | Bahiopsis chenopodina (Greene) E.E.Schill. & Panero | Shrub |
Bebbia juncea (Benth.) Greene | Herb | |
Ambrosia bryantti (Curran) Payne | Shrub | |
Pectis rusbyi Greene ex A. Gray | Herb | |
Perityle californica Benth. | Herb | |
Perityle incompta Brandegee | Herb | |
Porophyllum crassifolium S.Watson | Shrub | |
Sonchus oleraceus L. | Herb | |
Boraginaceae | Bourreria sonorae S. Watson | Shrub |
Burseraceae | Bursera microphylla A. Gray | Succulent |
Bursera odorata Brandegee | Succulent | |
Cactaceae | Cylindropuntia cholla (Engelm. & Bigelow) F.M. Knuth | Succulent |
Cylindropuntia molesta (Brandegee) F.M.Knuth | Succulent | |
Ferocactus chrysacanthus (Orcutt) Britton & Rose | Succulent | |
Mammillaria armillata K. Brandegee | Succulent | |
Pachycereus pringlei (S. Watson) Britton & Rose | Succulent | |
Stenocereus gummosus (Engelm.) A.Gibson & K.E.Horak | Succulent | |
Stenocereus thurberi (Engelm.) Buxb. | Succulent | |
Convolvulaceae | Ipomea meyeri G.Don | Climbing |
Merremia aurea (Kellogg) O'Donell | Climbing | |
Cucurbitaceae | Ibervillea sonorae (S. Watson) Green | Climbing |
Cyperaceae | Cyperus hermaphroditus (Jacq.) Standl. | Herb |
Euphorbiaceae | Adelia virgata Brandegee | Shrub |
Chamaesyce polycarpa (Benth.) Millsp. ex Parish | Herb | |
Cnidoscolus angustidens Torr. | Herb | |
Euphorbia californica Boiss. | Shrub | |
Jatropha cinerea (Ortega) Muell.-Arg. | Succulent | |
Jatropha cuneata Wiggins & Rollins | Succulent | |
Fabaceae | Acacia farnesiana (L.) Willd. | Shrub |
Calliandra californica (Benth.) D. Gibs. | Shrub | |
Haematoxylon brasiletto H. Karst. | Shrub | |
Mimosa distachya Cav. Vent. | Shrub | |
Olneya tesota A. Gray. | Tree | |
Parkinsonia florida (Benth. ex A. Gray) S. Watson | Tree | |
Prosopis articulata S. Watson | Tree | |
Rynchosia pyramidalis (Lam.) Urb. | Climbing | |
Fouqueriaceae | Fouquieria diguetti (Tiegh.) I. M. Johnst. | Tree |
Kramariaceae | Krameria parvifolia Benth. | Shrub |
Malvaceae | Melochia tomentosa L. | Shrub a |
Sida xanti A. Gray | Herb | |
Martyniaceae | Proboscidea altheifolia (Benth.) Decne. | Herb |
Nyctaginaceae | Boerhavia coulteri (Hook. F.) S. Watson | Herb |
Polemoniaceae | Ipomopsis tenuifolia (A. Gray) V. Grant | Herb |
Polygonaceae | Antigonon leptopus Hook & Arn. | Climbing |
Portulacaceae | Portulaca halimoides L. | Herb |
Rhamnaceae | Colubrina glabra S. Watson | Shrub |
Condalia globosa I.M. Johnston | Shrub | |
Karwinskia humboldtiana Zucc. | Shrub | |
Solanaceae | Datura discolor Bernh. | Herb |
Lycium brevipes Benth. | Shrub | |
Solanum hindsianum Benth. | Shrub | |
Turneraceae | Turnera diffusa Willd. ex Schult. | Shrub |
Verbenaceae | Lippia palmeri S. Watson | Shrub |
Zygophyllaceae | Tribulus terrestris L. | Herb |
The IVI results show among the main species Jatropha cinerea with 10.7 %, Ruellia californica I.M. Johnst, with 6.7 %, Turnera diffusa Willd. ex Schult. with 5.46 %, Lippia palmeri S. Watson with 4.48 % and Fouquieria diguetti with 4.33 %, as species with the highest IVI for the rainy season (wet). In contrast, for the dry season, an IVI was obtained in Ruellia californica of 12.48 %, Prosopis articulata S. Watson with 11.76 %, Stenocereus gummosus with 9.87 %, Cylindropuntia cholla Engelm. & Bigelow) F.M. Knuth with 8.61 % and Mammillaria armillata K. Brandegee with 7.7 %, with the highest values in the dry season. The richness (S´) of species is greater for the rainy season, with an S´ = 8.09 and for the dry season an S´ = 4.88 is shown.
For the diversity of species (H´), in the rainy season a value of H´ = 3.36 was observed and in the dry season a value of H´ = 2.88, which indicates high diversity during the wet season, as expected, which coincides with the results of Alanís et al. (2015a) in this type of scrub in Nuevo León. For abundance (N ha-1) and dominance (m2 ha-1), significant differences were detected between the two seasons (p = 0.000087) and (p = 0.000085), respectively, which is extensive for diversity (H´) and species richness (S´) (p = 0.000088) between the two seasons (Figure 2).
Estación = Season; Abundancia = Abundance; Dominancia = Dominance; Índice de Shannon = Shannon Index; Húmeda = Wet; Seca = Dry.
Figure 2. Abundance (N ha-1), Dominance (m2 ha-1), Shannon-Wienner Index and Margalef Index during the wet and dry seasons of the study site. The bars indicate the values found for the different variables, with differences (p = ≤0.05) between the two seasons.
Floristic similarity
The Jaccard index shows values of Ij = 38.71, in species similarity between the two seasons. The results show similarities between sites 16, 17, 18 and 19 (Ij> 0.05) through the dendogram (Figure 3) with coverage (m2 * quadrant) and species in common, in each of the quadrants (Cilindropuntia cholla, Pachycereus pringlei and Stenocereus gummosus). Those with the greatest similarity between seasons are 16 and 19 (Ij = 0.06) and coincide with species such as Acacia farnesiana, Bourreria sonorae, Cylindropuntia cholla, Cnidoscolus angustidens, Krameria parvifolia, Mammillaria armillata, Prosopis articulata, Ruellia californica, Solanum hindsian Stenocereus gummosus and Turnera diffusa. The other group of quadrants that indicates homogeneity in coverage and species are sites 8 and 13 (Ij <0.05) with Cylindropuntia cholla, Cnidoscolus angustidens, Ferocactus chrysacanthus and Mammillaria armillata.
Figure 3. Dendrogram of floristic similarity between sites sampled for the two seasons.
Discussion
The sarcocaule scrub is characterized by the presence of arboreal and shrub species and, in general, of Jatropha cinerea, Stenocereus gummosus, Fouquieria diguetti Cylindropuntia cholla and Prosopis articulata as the most important taxa for the ecosystem, as documented by Velderrain et al. (2010) in his research on mounds with this type of scrub on the outskirts of the city of La Paz. However, these authors do not refer to the existence of Lippia palmeri and Turnera diffusa in their study, which can be explained because these species are located in the south of the municipality and not near the bay of La Paz.
Rascón et al. (2018) mention Lippia palmeri and Turnera diffusa with high value of importance in the municipality of Todos Santos, Baja California Sur, particularly in the Sierra de La Laguna, which is an area close to the study area and shows a botanical composition similar to that of the La Matanza valley.
Regarding the diversity of species, the presence of different families within this type of scrub favors a high index of diversity and richness of species (H´ = 3.36 and 2.88, S'= 8.09 and 4.88, for the wet and dry seasons, respectively) in this study, which is consistent with that obtained by Alanís et al. (2015b), in the submontane scrub around Monterrey, Nuevo León; they proved that this type of vegetation can have values of H´ = 3 for the Shannon-Wienner index and for the Margalef index, S ’= 6, since values less than 2 are considered of low diversity and richness.
Based on the above, the values of the present study for species diversity (H´) are good for this index in both seasons, and in turn, are similar to those of other scrub research studies such as those of Molina et al. (2013); Medina et al. (2015) and González et al. (2017). On the other hand, those of wealth are higher in the rainy season and slightly lower in the dry season (S´ = 8.09 and 4.88, respectively), which contrasts with that obtained by Medina et al. (2017) and with that of Marroquín et al. (2017), which show a low Margalef index in a xerophilous scrub (S’= 0.87 and 1.80). This is explained by the effect of the restoration of the vegetation and is lower than the data from the study described here for the wet and dry seasons.
Finally, the Jaccard similarity index indicates few similar quadrants in terms of species in common between the two seasons, since the climatic conditions determine the presence of some of them as well as families according to the season of the year, such as González et al. (2010), Domínguez et al. (2013) and Ramírez et al. (2013).
Conclusions
The described study provides data about the botanical composition of Palmar de Abajo Ranch, which belongs to the town of La Matanza, with the presence of sarcocaule scrub that is very diverse and rich in species. Knowledge of the type of families and genera of this site is relevant, since the abundance, dominance and frequency of taxa seem to be subject to seasonal changes in the seasons. A considerable reduction of species was observed between the two seasons evaluated (wet and dry), when the drought conditions are present.
Therefore, the results gathered here can serve as a basis to develop strategies for the conservation and monitoring of the flora of this area, since it presents some protected species. It would be convenient to update the list of species, carry out these analyzes regularly and cover more extensive areas in order to enrich the information provided.
Acknowledgements
The authors wish to express their gratitude to the Universidad Autónoma de Baja California Sur and to Dr. José Ángel Armenta Quintana, for the facilities provided during sapling and the research site. To Ing. Rafael Junco Córdova and to M.C. Itzcóatl Arce Romero, for their support during the measuring and data collection. To the Graduate School of Forest Sciences of the Universidad Autónoma de Nuevo León, for the help during the performance of the project and to Dr. Roque Ramírez Lozano (QEPD), for the impulse to start the experiment. To Conacyt for sponsoring the grant for Doctoral studies provided to the first author.
Conflict of interest
The authors declare that they have no conflict of interest.
Contribution by author
Emanuel Junco Carlón: manuscript writing, design and sampling of the experiment; Humberto González Rodríguez: design of the experiment, writing and correction of the manuscript; José Ángel Armenta Quintana: correction of the manuscript and sampling of the experiment; Israel Cantú Silva: review, correction and edition of the manuscript; Andrés Eduardo Estrada Castillón: review and edition of field data and manuscript correction; Mauricio Cotera Correa: review and correction of the manuscript; Marco Vinicio Meza Gómez: statistical data analysis and interpretation of results.
References
Alanís, E., J. Jiménez, H. González, P. A. Canizalez, A. Mora, J. M. Mata and J. Hernández. 2015a. Composition, structure and diversity of shrublands in Central Nuevo Leon, Mexico. Botanical Sciences 93(2): 1-11. Doi: 10.17129/botsci.60.
Alanís, E., J. Jiménez, A. Mora, J. G. Martínez, J. M Mata, A. C. Chávez y E. A. Rubio. 2015b. Estructura y diversidad del matorral submontano contiguo al Área Metropolitana de Monterrey, Nuevo León, México. Acta Botánica Mexicana 113: 1-19. Doi: 10.21829/abm113.2015.1093.
Cabrera L., B. A. 2009. Implicaciones del cambio de uso de suelo en la biodiversidad de los matorrales xerófilos: un enfoque multiescalar. Investigación ambiental. Ciencia y Política Pública 1(1): 6-16. https://pdfs.semanticscholar.org/2dd4/6d2ac994a3a0b7ad823a2491bcbe875b3455.pdf (11 de marzo de 2020).
Domínguez, T. G., H. González, R. G. Ramírez, A. E. Estrada, I. Cantú, M. V. Gómez, J. A. Villarreal, M. S. Alvarado y G. Alanís. 2013. Diversidad estructural del matorral espinoso tamaulipeco durante las épocas seca y húmeda. Revista Mexicana de Ciencias Forestales 4(17): 106-123. Doi: 10.29298/rmcf.v4i17.425.
Ferro-Díaz, J. 2015. Manual revisado de métodos útiles en el muestreo y análisis de la vegetación. Revista ECOVIDA 5(1): 139-186. http://revistaecovida.upr.edu.cu/index.php/ecovida/article/view/72/137 (11 de noviembre de 2019).
García, J. y F. Zavala. 2018. Composición florística y diversidad de la regeneración leñosa del matorral en Marín, Nuevo León. Ciencia UANL 91. Doi: 10.29105/cienciauanl21.91-2.
González, H., R. G. Ramírez, I. Cantú, M. V. Gómez y J. I. Uvalle. 2010. Composición y estructura de la vegetación en tres sitios del estado de Nuevo León, México. Polibotánica (29): 91-106. http://www.polibotanica.mx/esp/num29/tema4esp.htm (10 de noviembre de 2019).
González, M., R. Foroughbakhch, L. Rocha, M.A. Guzmán y H. González. 2017. Composición florística y caracterización estructural del matorral desértico micrófilo en Galeana, Nuevo León. Revista Mexicana de Ciencias Forestales 8(39): 83–98. Doi: 10.29298/rmcf.v8i39.45.
International Business Machines (IBM). 2013. IBM SPSS Statistics for Windows, Version 22.0. IBM Corp. Armonk, NY, USA. N/p.
Instituto Nacional de Estadística, Geografía e Informática (Inegi). 2009. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos; La Paz B.C.S. https://www.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/03/03003.pdf (11 de noviembre de 2019).
León de la L., J. L., J. J. Pérez and A. Breceda. 2000. A transitional xerophitic tropical plant community of the Cape Region, Baja California. Journal of Vegetation Science 11(4): 555-564. https://onlinelibrary.wiley.com/doi/pdf/10.2307/3246585 (11 de marzo 2020).
Marroquín, J. J., E. Alanís, J. Jiménez, O. A. Aguirre, J. M. Mata, E. A. Rubio y A. C. Chávez. 2017. Efecto de la restauración post-minería de la comunidad vegetal de matorral xerófilo, en Nuevo León, México. Acta Botánica Mexicana (120): 7-20. Doi: 10.21829/abm120.2017.1262.
Maya, Y. and L. Arriaga. 1996. Litterfall and phenological patterns of the dominant overstorey species of a desert scrub community in north-western Mexico. Journal of Arid Environments 34: 23-35. Doi: 10.1006/jare.1996.0090.
Medina G., R., I. Cantú S., A. E. Estrada C., H. González R. y J. A. Delgadillo V. 2017. Estructura y diversidad del matorral desértico rosetófilo rehabilitado con rodillo aireador, Coahuila, México. Polibotánica 44: 95-107. Doi: 10.18387/polibotanica.44.7.
Medina, R., I. Cantú, A. E. Estrada, H. González y J. A. Delgadillo. 2015. Cambios en la vegetación del matorral desértico micrófilo en un área bajo manejo. Revista Mexicana de Ciencias Forestales 6(32): 37-48. Doi: 10.29298/rmcf.v6i32.97.
Molina, V. M., M. Pando, E. Alanís, P. A. Canizales, H. González y J. Jiménez. 2013. Composición y diversidad vegetal de dos sistemas de pastoreo en el matorral espinoso tamaulipeco del Noreste de México. Revista Mexicana de Ciencias Pecuarias 4(3): 361-371. https://cienciaspecuarias.inifap.gob.mx/index.php/Pecuarias/article/view/3193/2618 (11 de marzo de 2020).
Pequeño, M. A., E. Alanís, J. Jiménez, O. A. Aguirre, M. A. González y V. M. Molina. 2017. Análisis estructural de dos áreas del matorral espinoso tamaulipeco del noreste de México. Madera y Bosques 23(1): 121-132. Doi:10.21829/myb.2017.2311125.
Perea, M. C., E. Ezcurra and J. L. León de la L. 2005. Functional morphology of a sarcocaulescent desert scrub in the bay of La Paz, Baja California Sur, Mexico. Journal of Arid Environments 62: 413-426. Doi: 10.1016/j.jaridenv.2005.01.004.
Ramírez O., R., J. A. Armenta Q., R., R. G. Ramírez L. and E. Romero V. 2011. Organic matter and crude protein ruminal degradation synchrony in diets selected by range goats. Tropical and Subtropical Agroecosystems 14(1): 109-117. https://www.redalyc.org/articulo.oa?id=93915703009 (10 de noviembre de 2019).
Ramírez, R. G., T. G. Domínguez, H. González, I. Cantú, M. V. Gómez, J. I. Sarquís y E. Jurado. 2013. Composición y diversidad de la vegetación en cuatro sitios del noreste de México. Madera y Bosques 19(2): 59-72. Doi: 10.21829/myb.2013.192340.
Rascón, J. M., E. Alanís, A. Mora, E. Buendía, L. Sánchez and J. E. Silva. 2018. Differences in vegetation structure and diversity of a forest in an altitudinal gradient of the Sierra La Laguna Biosphere Reserve, Mexico. Botanical Sciences 96(4): 598-608. Doi: 10.17129/botsci.1993.
Rebman, J. and N. Roberts. 2012. Baja California Plant Field Guide. Sunbelt Publications. 3rd edition. San Diego, CA, USA. 480 p.
Reid, N., J. J. Marroquín and M. P. Beyer. 1990. Utilization of shrubs and trees for browse, fuelwood and timber in the Tamaulipan thornscrub, northeastern Mexico. Forest Ecology and Management 36: 61-79. Doi: 10.1016/0378-1127(90)90064-I.
Reyes, P. R. y J. P. Torres-Florez. 2009. Diversidad, distribución, riqueza y abundancia de condrictios de aguas profundas a través del archipiélago patagónico austral, Cabo de Hornos, Islas Diego Ramírez y el sector norte del paso Drake.Revista de Biología Marina y Oceanografía 44(1): 243-251. Doi: 10.4067/s0718-19572009000100025.
Rosenzweigh, M. L. 1995. Species diversity in space and time. University of Cambridge Press. Cambridge, UK. pp. 50-72. Doi: 10.1017/CBO9780511623387.
Rzedowski, J. 2006. Vegetación de México. 1ra. Edición digital. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México, D.F. 504 p. https://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/VegetacionMx_Cont.pdf (10 de marzo de 2020).
Troyo, E., G. Mercado, A. Cruz, A. Nieto, R. D. Valdez, J. L. García y B. Murillo. 2014. Análisis de la sequía y desertificación mediante índices de aridez y estimación de la brecha hídrica en Baja California Sur, noroeste de México. Investigaciones Geográficas (85): 66-81. Doi: 10.14350/rig.32404.
Velderrain, L. A., J. L. León de la L. y Y. Maya. 2010. Estructura de la vegetación en montículos de la bahía de La Paz, Baja California Sur, México. Polibotánica 29: 67-90. http://www.polibotanica.mx/esp/num29/tema3esp.htm (11 de marzo de 2020).
Whorley, J. and G. J. Kenagy. 2007. Variation in reproductive patterns of antelope ground squirrels, Ammospermophilus leucurus, from Oregon to Baja California. Journal of Mammalogy 88(6): 1404–1411. Doi: 10.1644/06-MAMM-A-382R.1.
All the texts published by Revista Mexicana de Ciencias Forestales –with no exception– are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.