Mexicana de Ciencias Forestales Vol. 11 (60)

Julio – Agosto (2020)



Aprovechamiento forestal y diversidad arbórea en seis ejidos de Quintana Roo

Timber forestry and tree diversity at six ejidos in Quintana Roo

Efraín Aguirre Cortés1*

Griselda Escalona Segura1

Pedro Antonio Macario Mendoza2

Jorge Leonel León Cortés3

Luis Candelario Sánchez Pérez2

Birgit Schmook2

Fecha de recepción/Reception date: 23 de enero de 2020

Fecha de aceptación/Acceptance date: 25 de mayo de 2020


1El Colegio de la Frontera Sur, Campeche, México.

2El Colegio de la Frontera Sur, Chetumal, México.

3El Colegio de la Frontera Sur, San Cristóbal, México.

*Autor por correspondencia; correo-e:


El aprovechamiento forestal en el sureste de México se realiza desde la civilización Maya mediante usos tradicionales, concesiones forestales hasta la propiedad comunal. Actualmente, la mitad de los ejidos de Quintana Roo están enfocados en el aprovechamiento forestal maderable, principalmente en selvas medianas subperennifolias, el tipo de vegetación con mayor cobertura. El objetivo de este trabajo consistió en determinar la diversidad arbórea en 14 selvas del sur de la Península de Yucatán, con edades, prácticas de manejo y conservación distintas: seis en ejidos forestales del estado de Quintana Roo y ocho en otros sitios. Se analizaron 10 parcelas de 500 m2 por sitio, en las que las especies arbóreas fueron identificadas taxonómicamente y se midió el diámetro a la altura del pecho en ejemplares desde los 7.5 cm hasta 1.30 m sobre el suelo. Se determinó una riqueza de 156 especies de árboles con abundancia, dominancia e importancia relativas contrastante entre sitios. Se realizó, para los 14 sitios, un análisis de similitud de Bray Curtis, que se conformó por tres grupos: el primero por un sitio en la Reserva de la Biósfera de Calakmul sin uso, el segundo por seis sin uso, desde 7 hasta 50 años y el tercero por seis ejidos forestales. La riqueza, abundancia y similitud entre ellos probablemente se asocian a la ubicación geográfica y a la edad de recuperación tanto de disturbios antrópicos como naturales. Se sugiere incorporar dichas características ecológicas como indicadores en los planes de aprovechamiento forestal, acotados ambiental y socioeconómicamente.

Palabras clave: Abundancia, composición, disturbio, dominancia, silvicultura, similitud.


Timber forestry in southern Mexico is a common practice since Mayan civilization, through traditional uses, forest concessions and up to communal land tenure. Currently, half of Quintana Roo ´s ejidos are focused on timber forestry use, mainly on middle evergreen subtropical forests, the greatest kind of vegetation cover. This aim of this study was to determine forestry diversity in 14 forests in the south of Yucatán Peninsula with different age, management and conservation practices: six forestry sites in Quintana Roo and eight in other places. 10 plots of 500 m2 per site were analyzed, in which the tree species were taxonomically identified and the diameter at height was measured in specimens from 7.5 cm to 1.30 m above the ground. A richness of 156 tree species with relative abundance, dominance and importance was determined, contrasting between sites. A similarity analysis was carried out for the 14 sites by the Bray Curtis method, which was made up of three groups: the first by site of the Calakmul Biosphere Reserve without use, the second by six sites without use, from 7 to 50 years old and the third by six forest ejidos. The richness, abundance and similarity between them are probably associated with the geographical location and the age of recovery from anthropogenic and natural disturbances. It is suggested to incorporate these ecological characteristics as indicators in the forest use plans, limited environmentally and socioeconomically.

Key words: Abundance, composition, disturbance, dominance, forestry, similarity.


Timber forestry in the Yucatán Peninsula has been made since the Mayan civilization, with a decrease in the years 800 to 1 000 A.D. or Classic Period (Turner and Sabloff, 2012; Sánchez-Sánchez et al., 2015). During the colonial times, extraction focused on species such as dye stick (Haematoxylon campechianum L.), chewing gum (Manilkara zapota (L.) P.Royen), cedar (Cedrela odorata L.) and mahogany (Swietenia macrophylla King), under different schemes. These are summarized in three phases: traditional uses, concessions and community businesses (Noble and Dirzo, 1997; Galleti, 1999; Simonian, 1999; Negreros et al., 2014).

The last phase of forest concessions in Quintana Roo was carried out by Maderas Industrializadas de Quintana Roo (Miqro) parastatal company from 1954 to 1983, which focused on the use of cedar and mahogany, mainly (Negreros et al., 2014; Torres-Rojo et al., 2016). Miqro's experience laid the foundations for establishing infrastructure and technical personnel, as well as a forestry culture. In the 1980s, the Forest Pilot Plan (PPF, for its acronym in Spanish) was implemented, through the German Cooperation Agency and the Mexican government (Armijo et al., 2010; Negreros et al., 2014); this resulted in community forest inventories, community forest companies and the establishment of permanent forest areas, which subsequently consolidated regional community organizations, such as the Society of Ejido Producers of Quintana Roo and the Organization of Ejido Forest Producers of the Maya Zone (Galleti, 1999; Armijo et al., 2010).

Collective tenure through agrarian communities or ejidos has been recognized since the Mexican Revolution before the Agrarian Law (Bray et al., 2007). Communal property in Mexico is close to 80 % of forests and jungles (Galleti, 1999; Bray et al., 2007) and is particularly relevant in central and southern Quintana Roo; the first neotropic community timber forestry harvesting center was organized there (Torres-Rojo et al., 2016) and where the greatest activity of community projects is carried out (Bray et al., 2007). Mainly medium-sized evergreen forests are managed, which are the main type of vegetation in the entity (Islebe et al., 2015); they register from 100 (Synnott, 2009) to 200 species in total (Negreros et al., 2014).

At present, timber forestry in Quintana Roo is practiced in 106 of its 283 ejidos, which together amount to 1.58 million hectares, equivalent to 54.05 % of the state's total ejidos and 35.41 % of the state's land area (Inegi, 2017; Registro Nacional Agrario, 2018). The selection method is used, with 25-year shifts (Snook, 1998), based on the Mexican Forest Management Method (Torres-Rojo et al., 2016). Extraction focuses on 25 species (Negreros et al., 2014), known as tropical commons and precious woods, which are exploited in areas designated by the ejidatarios, based on the General Law of Sustainable Forest Development and the authorization of the Ministry of Environment and Natural Resources (Semarnat) and the National Forest Commission (Conafor) (Semarnat-Conafor, 2014). The objective of this work was to determine the arboreal diversity of six ejidos under forest exploitation in Quintana Roo with eight other forests in the south of the Yucatán Peninsula under different conservation states.

Materials and Methods


The six forest ejidos are located in the Othón P. Blanco and Bacalar municipalities, in the state of Quintana Roo (Figure 1). The information in this study comes from the databases associated with the timber and non-timber forest management programs, called Unified Timber Forestry Procedures, which were presented, submitted and validated in 2016, by six ejidos to the State Forestry Council of Quintana Roo, for authorization by the Ministry of the Environment and Natural Resources.

Figure 1. Location of the six forest ejidos: 1) Guadalupe Victoria, Bacalar; 2) Otilio Montaño, Bacalar; 3) Francisco J. Mújica, Bacalar; 4) Manuel Ávila Camacho, Bacalar; 5) Río Escondido, Bacalar; 6) Othón P. Blanco, Veracruz.

Plot selection

Ten 500 m2 circular plots were chosen per ejido, in which vegetation samplings were taken with mensuration data of the tree specimens from 7.5 cm in diameter at a height of 1.30 m, for the use of timber and non-timber forest resources, with a 283D/5m Forestry Suppliers measuring tape. The information was confirmed by the State Forestry Council of the State of Quintana Roo, through the Forest Management Technical Committee, in order to issue the technical opinion on the authorization process for timber forest exploitation carried out by Semarnat and Conafor.

Additionally, the extensive documents of the Unified Timber Forestry Procedures were reviewed, and their subsequent verification with the Register and History of Agrarian Nuclei and the Diario Oficial de la Federación ( In addition, a debugging and updating of the taxonomic identities of the tree species, was carried out through The Plant List (, The Global Biodiversity Information Facility ( and the Herbarium of the Center of Scientific Research of Yucatán, A. C. ( databases.

Floristic composition, diversity and relative importance value (VIR)

Species richness was estimated with the taxonomic identity data, while the basimetric area per species was determined with the diameter; the Relative Importance Values (VIR, for its acronym in Spanish) were obtained by the sum of the relative abundance, frequency and basimetric area (AB), for each of the 14 sites analyzed, based on standardized formulas (Magurran, 2004) in spreadsheets.

Statistical analysis

The age of the forests of the six ejidos was considered to be eight, taken from the time elapsed from Dean hurricane in 2007, the closest disturbance, since there are no previous reports of anthropic extraction or disturbances. The data of the analyzed plots of the six forest ejidos were compared to other forests in the south of the Yucatán Peninsula: Laguna Om and Xhazil with 20 and over 50 years, respectively, without use, (Macario, 2003); Calakmul, from 7 to 10 years and more than 20 years without use (Aguirre et al., 2018) and from the Calakmul Biosphere Reserve: km 20 and Ramonal, 10 years without use. The normality test (Shapiro-Wilks) was performed at the abundance values for the 14 sites. A nonparametric test was performed using the Kruskal-Wallis test by intervals, as the normality assumptions were not met. Combinations were compared for the 14 sites using Tukey's paired tests. In addition, a Bray-Curtis similarity analysis was made and the results were presented in a dendrogram for the 14 sites, using the PAST program 3.1 version (Hammer, 2001). Statistical tests were performed with the SigmaStat 4.0 program (Systat Software, 2016).

Results and Discussion

Floristic composition, richness and diversity of species

For the 60 plots in the six forest ejidos analyzed, the total record amounted for 2 119 individuals, which belong to 93 species, 72 genera and 29 families (Table 1). The families with greatest richness were Fabaceae, Sapotaceae and Euphorbiaceae with 23, 9 and 6 % of species, respectively, and the most abundant were Gymnanthes lucida Sw., Manilkara zapota (L.) P.Royen and Bursera simaruba (L.) Sarg., which make up to 7.7, 6.8 y 4.9 % of the total number of individuals.

Table 1. Ejido data, structure parameters and composition of the tree species of each one of the ejidos.








Total surface area (ha)







Number of years of the endowment of the ejido



































AB (m2)







MA = Manuel Ávila Camacho; FM = Francisco Mújica; OM = Otilio Montaño; RE = Río Escondido; VE = Veracruz; GV = Guadalupe Victoria; AB = Basimetric area.

From 93 species found in the total number of the analyzed plots of the six ejidos, only six out of 11 are called tropical common (in bold), that is, that they are potential harvesters; they were included between those which had a better representation based upon the Relative Importance Value (VIR): Lysiloma latisiliquum (L.) Benth, Haematoxylon campechianum L., Gymnanthes lucida, Manilkara zapota, Terminalia buceras (L.) C. Wright, Coccoloba spicata Lundell, Bursera simaruba, Metopium brownei (Jacq.) Urb., Pouteria reticulata (Engl.) Eyma, Vitex gaumeri Greenm. and Brosimum alicastrum Sw. (Figure 2). From half of the total number of individuals, four species were added to the 11 formerly mentioned in order to highlight the importance of a small number of those that are dominant in the six forest ejidos: Piscidia piscipula (L.) Sarg., Caesalpinia gaumeri Greenm., Caesalpinia pulcherrima (L.) Sw and Thouinia paucidentata Radlk. From these 15 species, seven are dominant in Francisco Mújica, Otilio Montaño, Guadalupe Victoria; five in Manuel Ávila Camacho, Río Escondido; three in Veracruz.

MA = Manuel Ávila Camacho; FM = Francisco Mújica; OM = Otilio Montaño; RE = Río Escondido; VE = Veracruz; GV = Guadalupe Victoria.

Frecuencia = Frequency; Abundancia = Abundance; Área basal = Basimetric area.

Figure 2. Relative Importance Value (VIR) for the five tree species with greater representation in the six forest ejidos.

The species with highest accumulated VIR for the six ejidos were Manilkara zapota, Metopium brownei and Bursera simaruba. However, when designing the abundance interval curves for each ejido (Ramírez-Marcial et al., 2017), and with a small number of individuals, the species with greatest relative importance was Gymanthes lucida, which contributed with 11, 20 and 14 % of the individuals ratio in three sites (Figure 3), with similar percentages to Lysiloma latisiliquum, (13 %), Coccoloba spicata (12 %) and Manilkara zapota (17 %). In contrast, from the precios species such as Cedrela odorata, only one individual was recorded, while Swetenia macrophylla had 18 in total. When analyzing and comparing the number of samples, the only one that statistically differed was Veracruz (p < 0.05) in Otilio Montaño, while, based upon VIRs the statistical difference was also significant between Veracruz with Otilio Montaño (p < 0.05) and Guadalupe Victoria, in the same magnitude (p < 0.05).

MA = Manuel Ávila Camacho, FM = Francisco Mújica, OM = Otilio Montaño, RE = Río Escondido, VE = Veracruz, GV = Guadalupe Victoria.

Número de individuos = Number of individuals.

Figure 3. Abundance interval curves of the six ejidos, which indicate the species with the greatest abundance for each ejido.

The number of species in the present study and of eight analyzed sites, was 156, from 21 (Ramonal) to 70 (Xhazil 20 years). These results are within the parameters of wealth and dominance with other forest ejido locations in Quintana Roo, where 168 species have been registered, in an interval of 93 to 117 per site, with a dominance of Pouteria reticulata, Manilkara zapota and Bursera simarouba (Negreros et al., 2014). The sites with the greatest statistical differences were Laguna Om and Xhazil, 20 years old, compared to six and seven, respectively (p <0.05). On the other hand, the percentage of similarity between the 14 sites ranged from 13 % (Veracruz and Ramonal) to 75 % (Otilio Montaño and Francisco Mújica), with a general average between sites of 41 %. The sites with the least similarity were Ramonal (26 %) and Km 20, and those with the greatest similarity were Otilio Montaño and Francisco Mújica (48 %) compared to the other sites.

The similarity tree (Figure 4) shows the formation of two groups at the 0.35 value (that is, 35 % similar) which are associated with their geographic location west of the Yucatán Peninsula (km 20 and Ramonal) with respect to the others. Two groups are formed in the middle of the similarity tree, consistent with the harvesting and incidence of hurricanes: the first, made up of sites near the Calakmul Biosphere Reserve and the other by the six forest ejidos of the state of Quintana Roo.

Km 20 = Km 20; RAM = Ramonal; CKM1 = Calakmul 7-10 years; LO 20 = Laguna Om 20 years; Xh 20 = Xhazil 20 years; LO 50 = Laguna Om 50 years; Xh 50 = Xhazil 50 years; CKM2 = Calakmul 20 years; MA = Manuel Ávila Camacho; FM = Francisco Mújica; OM = Otilio Montaño; RE = Río Escondido; VE = Veracruz; GV = Guadalupe Victoria; Similitud = Similarity

Figure 4. Bray-Curtis similitude dendogram for the 14 evergreen tropical forests analyzed.

The values of abundance and relative importance among the six ejidos, from the time elapsed since major hurricanes such as Dean (2007) occurred, suggests that, in addition to having been affected by these natural disturbances, they have been subject to anthropogenic influences; they dominate as pioneer species, typical of early successional stages (Lysiloma latisiliquum), in-between such as Coccoloba spicata and Gymnanthes lucida (Mize and Negreros, 2007), to late species (Manilkara zapota), probably associated with the opening of natural gaps or due to selective extraction (Dickinson et al., 2000) and that they coexist with persistent dominant species (Bursera simarouba) and persistent non-dominant species (Coccoloba spicata), which can survive disturbances of different kinds (Román-Dañobeytia et al., 2014).

Most of the taxa used in timber forestry are differentially light-tolerant (Vester and Calmé 2003), so the gap dynamics derived from large-scale events (hurricanes and fires), and not selective extraction, have an effect on other species in sites under logging in Quintana Roo (Whigham et al, 1999). The differential abundance of the species, as an indicator of anthropic disturbance by forest extraction, has favored plant communities dominated by species such as Metopium brownei (Jacq.) Urb or Brosimum alicastrum Sw., due to the greater availability of light and an uneven establishment of the species, as verified in Xhazil, Quintana Roo (Macario et al., 1995). This has been demonstrated by the proportion of the damage, its association with the density of wood (Vandecar et al., 2011) and the history of use of the sites on different tree species, in several ejidos in the center of Quintana Roo, affected by Hurricane Dean in 2007 (McGroddy et al., 2013).

According to the results of the present study, in the Manuel Ávila Camacho ejido, 90 km from the Quintana Roo coast, Lysiloma latisiliquum was the most abundant species with the lowest wood density. In contrast, Gymnanthes lucida, with a higher wood density, was dominant in three of the six ejidos, but is located 130 km inland from the entry site of Hurricane Dean, which affected the six ejidos in which it worked. Therefore, it is likely that the distance between sites associated with the distribution gradient of plant associations in the Yucatán Peninsula (Islebe et al., 2015), the history of exploitation of ejidos (McGroddy et al., 2013), the onslaught of anthropic or natural disturbances (de Jong, 2013; Sánchez-Sánchez et al., 2015), as well as the intrinsic characteristics of tree species, operate simultaneously (Pat-Aké et al., 2018) on the composition and structure of these jungles. These abundance and dominance of species, not considered profitable for commercial use, are used for firewood, medical applications and construction material, as indicated by Negreros and Mize (1993), Negreros and Hall (2000) in other forests at the center of the state of Quintana Roo.


Based on the abundances among the 14 sites analyzed, it is proposed that this parameter be used as an indicator of the differential performance of forest species in similar plant associations, but with different use histories and as well as under uneven natural or anthropogenic disturbances. It is suggested to incorporate both wealth, as well as abundance and value of relative importance as indicative variables in timber harvesting plans, in different environmental and socioeconomic contexts.

The similarity and grouping between the analyzed forests allows to suggest that the geographical position and recovery after anthropic and natural disturbances make up the current composition of these plant associations.


To the Consejo Nacional de Ciencia y Tecnología (National Council of Science and Technology) (Conacyt) and to the Sistema Nacional de Investigadores (National System of Researchers) (SNI). To the staff of El Colegio de la Frontera Sur (Ecosur), Campeche and Chetumal Campus, for the facilities provided to carry out this paper. To M. in C. Víctor Manuel Kú - Quej for the elaboration of the site location map.

Conflict of interests

The authors declare no conflict of interest.

Contribution by author

Efraín Aguirre Cortés, Griselda Escalona Segura, Pedro Antonio Macario Mendoza, Jorge Leonel León Cortés, Birgit Schmook: data analysis, manuscript preparation and design of figures and tables; Luis Candelario Sánchez Pérez: analysis and processing of databases and generation of ejido polygons.


Aguirre C., E., J. O. López M., B. Vargas L., J. M. Pat F. y P. A. Macario M. 2018. Preferencias de uso de leña en un paisaje cultural en el sur de México. Revista Chapingo, Serie: Ciencias Forestales y del Ambiente 24(2): 147-160. Doi: 10.5154/r.rchscfa.2017.08.053.

Armijo, N., M. A. Bocanegra y F. Quintana. 2010. La cooperación internacional para la actividad forestal en Quintana Roo: origen, actores, desarrollo y prospectivas. In: Romero, R. y J. Benítez López (Eds.). La agenda de cooperación internacional en la frontera sur de México. Universidad de Quintana Roo-Bonilla Artigas Editores. México, D. F., México. pp. 167– 188.

Bray, D. B., L. Merino y D. Barry. 2007. El manejo comunitario en sentido estricto: las empresas forestales comunitarias de México. In: Bray D., B. y L. Merino. (Coords.). Los bosques comunitarios de México: manejo sustentable de paisajes forestales. Instituto Nacional de Ecología. México, D. F., México. pp. 21–50.

de Jong, B. H. J. 2013. Spatial distribution of biomass and links to reported disturbances in tropical lowland forests of southern Mexico. Carbon Management 4(6): 601–615. Doi: 10.4155/cmt.13.60.

Dickinson, M. B., D. F. Whigham and S. M. Hermann. 2000. Tree regeneration in felling and natural treefall disturbances in a semideciduous tropical forest in Mexico. Forest Ecology and Management 134(1-3):137-151. Doi: 10.1016/S0378-1127(99)00252-2.

Galleti, H. A. 1999. La selva maya en Quintana Roo (1983-1996) trece años de conservación y desarrollo comunal. In: Primack, R. B., D. B. Bray, H. A. Galleti e I. Ponciano (Eds.). La Selva Maya: Conservación y Desarrollo. Siglo XXI Editores. México, D.F., México. pp. 53-73.

Hammer, Ø., D. A. T. Harper and P. D. Ryan. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):1-9.

Herbario del Centro de Investigación Científica de Yucatán A. C. 2019. Flora de la Península de Yucatán                         (1 de octubre de 2019).

Instituto Nacional de Estadística y Geografía (Inegi) 2017. Anuario estadístico y geográfico de Quintana Roo 2017. Instituto Nacional de Estadística y Geografía. Aguascalientes, Ags., México. 348 p.

Islebe, G. A., O. Sánchez S., M. Váldez H. and H. Weissenberger. 2015. Distribution of vegetation types. In: Islebe, G. A., S. Calmé, J. L.León-Cortés J. and B. Schmook. (Eds.). Biodiversity and conservation of the Yucatán Peninsula. Springer International Publishing. Basel, Switzerland. pp. 39–53.

Macario M., P. A., E. García M. y E. Hernández X. 1995. Regeneración natural de especies arbóreas en una selva mediana subperennifolia perturbada por extracción forestal. Acta Botánica Mexicana 32: 11-23. Doi: 10.21829/abm32.1995.742.

Macario M., P. A. 2003. Efecto del cambio en el uso del suelo sobre la selva y estrategias para el manejo sustentable de la vegetación secundaria en Quintana Roo. Tesis Doctoral. Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán. Mérida, Yuc, México. 183 p.

Magurran, A. E. 2004. Measuring biological diversity. Blackwell Publishing. Oxford, UK. 264 p.

McGroddy, M., D. Lawrence, L. Schneider, J. Rogan, I. Zager and B. Schmook. 2013. Damage patterns after Hurricane Dean in the southern Yucatán: Has human activity resulted in more resilient forests? Forest Ecology and Management 310: 812-820. Doi: 10.1016/j.foreco.2013.09.027.

Mize, C. and P. Negreros C. 2007. Stand and species growth of a tropical forest in Quintana Roo, Mexico. Journal of Sustainable Forestry 23(3):83-95.                    Doi: 10.1300/J091v23n03_04.

Negreros C., P. and C. Mize. 1993. Effects of partial overstory removal on the natural regeneration of a tropical forest in Quintana Roo, Mexico. Forest Ecology and Management 58: 259-272. Doi: 10.1016/0378-1127(93)90149-H.

Negreros C., P. and R. B. Hall. 2000. Sprouting capability of 17 tropical tree species after overstory removal in Quintana Roo, Mexico. Forest Ecology and Management 126(3): 399-403. Doi: 10.1016/S0378-1127(99)00109-7.

Negreros C., P., L. Cámara C., M. S. Devall, M. A. Fajvan, M. A. Mendoza B., C. W. Mize y A. Navarro M. 2014. Silvicultura de las selvas de caoba en Quintana Roo, México: Criterios y recomendaciones. Comisión Nacional Forestal. Zapopan, Jal., México.186 p.

Noble, I. R. y R. Dirzo. 1997. Forests as human-dominated ecosystems. Science 277(5325): 522-525. Doi: 10.1126/science.277.5325.522.

Pat-Aké, I., L. C. Cámara-Cabrales, S. Ward, P. Martínez-Zrimendi, J. L. Martínez-Sánchez, P. Negreros-Castillo y N. Sorensen. 2018. Efecto del huracán Dean en la dinámica estructural de selvas bajo manejo forestal en Quintana Roo, México. Madera y Bosques 24(2): e2421585. Doi: 10.21829/myb.2018.2421585.

Registro Agrario Nacional. 2018. Herramienta de visualización y análisis de amenazas al territorio en la Península de Yucatán (10 de octubre 2019).

Ramírez-Marcial, N., M. Martínez-Icó, A. Luna-Gómez, C. Buet y N. E. Taylor-Aquino. 2017. Diversidad local y regional de árboles en la Reserva de la Biosfera Selva El Ocote, Chiapas. Vulnerabilidad social y biológica ante el cambio climático en la Reserva de la Biosfera El Ocote, Chiapas. El Colegio de la Frontera Sur. San Cristóbal de las Casas, Chis., México. pp. 255-308.

Registro Agrario Nacional (RAN). 2019. Padrón e Historial de Núcleos Agrarios, (10 de octubre de 2019).

Román-Dañobeytia, F. J., S. I. Levy-Tacher, P. Macario-Mendoza and J. Zúñiga-Morales. 2014. Redefining secondary forests in the Mexican Forest Code: Implications for management, restoration, and conservation. Forests 5(5): 978-991. Doi: 10.3390/f5050978.

Sánchez-Sánchez, O., G. A. Islebe, P. J. Ramírez-Barajas and N. Torrescano-Valle. 2015. Natural and human induced disturbance in vegetation. In: Islebe, G. A., S. Calmé, J. L. León C. and B. Schmook (Eds.). Biodiversity and conservation of the Yucatán Peninsula. Springer International Publishing. Basel, Switzerland. pp. 153-167.

Secretaría de Medio Ambiente y Recursos Naturales-Comisión Nacional Forestal (Semarnat-Conafor). 2014. Inventario Forestal y de Suelos del Estado de Quintana Roo 2013. Comisión Nacional Forestal. Zapopan, Jal., México. 128 p.

Simonian, L. 1999. La defensa de la tierra del jaguar. Una historia de conservación en México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México, D.F., México. 345 p.

Snook, L. K. 1998. Sustaining harvests of mahogany (Swietenia macrophylla King) from Mexico’s Yucatan forests: Past, present, and future. In: Primack, R. B., D. Bray, H. A. Galletti and I. Ponciano (Eds.). Timber, tourists, and temples: Conservation and development in the Maya forest of Belize, Guatemala and Mexico. Island Press, Washington, DC, USA. pp.61-80.

Synnott, T. J. 2009. La caoba en la península de Yucatán: ecología y regeneración. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad–Corredor Biológico Mesoamericano México. Serie Conocimientos Número 7. México, D.F., México, D.F. 154 p.

Systat Software. 2016. SigmaStat  version 4.0.  Systat Software Inc. San Jose, CA, USA. n/p.

The Plant List. 2019. The Plant List. (17 de octubre de 2019).

The Global Biodiversity Information Facility (GBIF). 2019.   (24 de octubre de 2019).

Torres-Rojo, J. M., R. Moreno-Sánchez and M. A. Mendoza-Briseño. 2016. Sustainable forest management in Mexico. Current Forestry Reports 2 (2): 93-105. Doi: 10.1007/s40725-016-0033-0.

Turner, B. L. and J. A. Sabloff. 2012. Classic Period collapse of the Central Maya Lowlands: Insights about human–environment relationships for sustainability. Proceedings of the National Academy of Sciences 109(35): 13908-13914. Doi: 10.1073/pnas.1210106109.

Vandecar, K. L., D. Lawrence, D. Richards, L. Schneider, J. Rogan, B. Schmook and H Wililbur. 2011. High mortality for rare species following hurricane disturbance in the Southern Yucatan. Biotropica 43(6): 676-684. Doi: 10.1111/j.1744-7429.2011.00756.x.

Vester, H. F. y S. Calmé. 2003. Los ecosistemas terrestres de la Península de Yucatán. Estado actual de paisajes, vegetación flora y fauna. In: Colunga-García Marín, P. y A. Larqué S. (Eds.). Naturaleza y sociedad en el área maya: pasado, presente y futuro. Academia Mexicana de Ciencias, Centro de Investigación Científica de Yucatán, A. C. México, D. F., México. pp 159-174.

Whigham, D. F., J. Lynch, F. y M. B. Dickinson. 1999. Dinámica y ecología de los bosques naturales y manejados en Quintana Roo, México. In: Primack, R. B., D. B. Bray, H. A. Galleti e I. Ponciano (Eds.). La Selva Maya: Conservación y Desarrollo. Siglo XXI Editores. México, D.F., México. pp. 312-328.

All the texts published by Revista Mexicana de Ciencias Forestales with no exception– are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.