Revista Mexicana de Ciencias Forestales Vol. 10 (54)
Julio – Agosto (2019)
DOI: https://doi.org/10.29298/rmcf.v10i54.498 Article Almacenamiento de carbono en la reserva ecológica de Ternium en Pesquería, Nuevo León Carbon storage in Ternium Ecological Reserve at Pesquería, Nuevo León State Ana María Patiño Flores1, Eduardo Alanís Rodríguez1*, Víctor Manuel Molina Guerra1,2, Humberto González Rodríguez1, Enrique Jurado1 y Oscar Alberto Aguirre Calderón1 |
Fecha de recepción/Reception date: 29 de enero de 2019
Fecha de Aceptación/Acceptance date: 26 de junio de 2019
_______________________________
1Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León. México.
2 RENAC, S.A. de C.V. Linares, NL. México.
*Autor por correspondencia; correo.e: eduardo.alanisrd@uanl.edu.mx
Resumen
La reserva ecológica Ternium es un área de conservación de flora y fauna, que incluye al Matorral Espinoso Tamaulipeco. En este estudio se cuantificó el almacenamiento de carbono en las diferentes áreas de la reserva ecológica. Se realizó un muestreo estratificado al azar con imágenes satelitales para definir las comunidades. En ellas, se muestrearon 10 sitios rectangulares de 10 × 20 m (100 sitios en total) en los que se evaluó el diámetro basal, la altura total y los diámetros de copa de cada individuo con diámetro basal > 3 cm. Para determinar el almacenamiento de carbono se estimó la biomasa mediante ecuaciones alométricas y, una vez calculada la biomasa, se utilizó el factor de 45.4 % para la estimación de carbono propuesto para especies del Matorral Espinoso Tamaulipeco. Se registraron 16 familias, 27 géneros y 28 especies. La comunidad vegetal que presentó mayor biomasa total y contenido de carbono fue la de Mezquite-Huizache con 102.44 y 46.10 Mg ha-1, respectivamente; mientras que en las comunidades vegetales derivadas de plantaciones forestales se registraron las cifras más bajas (1.74 y 3.96 Mg ha-1). En general, el contenido de carbono promedio en el área fue de 12.77 Mg ha-1. Los taxones que contribuyeron a capturar la mayor concentración de carbono por sus dimensiones fueron: Prosopis glandulosa, Acacia farnesiana y Cercidium macrum.
Palabras clave: Acacia farnesiana (L.) Willd., captura de carbono, Cercidium macrum I. M. Johnst., Matorral Espinoso Tamaulipeco, Prosopis glandulosa Torr., reserva ecológica.
Abstract
The Ternium Ecological Reserve is a flora and fauna conservation area, which includes the Tamaulipan Thornscrub. In this study, carbon storage was quantified in the different areas of the ecological reserve. Stratified random sampling was carried out, using satellite images to define the different communities. In each one of them, 10 rectangular sites of 10 × 20 m (a total number of 100 sites) were sampled, in which the basal diameter, the height and the diameters of the crown of each individual with a basal diameter> 3 cm were measured. To determine carbon storage, biomass was estimated by allometric equations and once it was calculated, a 45.4 % factor was used for carbon estimation proposed for the Tamaulipan Thornscrub species. 16 families, 27 genera and 28 species were recorded. The vegetal community that presented the highest total biomass and carbon was the Mezquite-Huizache with 102.44 and 46.10 Mg ha-1 respectively, while the vegetal sources derived from the plantations, recorded the lowest numbers (1.74 and 3.96 Mg ha-1). In general, the area has an average carbon content of 12.77 Mg ha-1. The species that contributed to a greater carbon concentration due to their size were: Prosopis glandulosa, Acacia farnesiana and Cercidium macrum.
Key words: Acacia farnesiana (L.) Willd., carbon capture, Cercidium macrum I. M. Johnst., Tamaulipan Thornscrub, Prosopis glandulosa Torr., ecological reserve.
Introduction
Protected natural areas, biosphere reserves, national parks, natural monuments, natural resource protection areas, flora and fauna protection areas and sanctuaries are destined for conservation in the world (Toledo, 2005). When they began, their objective was the preservation of natural scenic beauty (Halffter, 2011), but over time this vision evolved until today these areas are intended to maintain biodiversity, habitat, as well as ecological processes such as water, soil and carbon sequestration (Dudley et al., 2008).
Among the environmental services provided by ecosystems, forests play a key role in the cycle and capture of carbon (C), since they manage to store large amounts of carbon in biomass and soil, and exchange with the atmosphere through the photosynthesis and breathing processes (Brown, 1999). Plant communities have some ability to store carbon. and this will depend on the floristic composition, age and density of the population of each stratum (Schulze et al., 2000). Carbon stored in terrestrial ecosystems changes due to natural or induced transformations such as erosion and land use change (Figueroa et al., 2005). These processes of carbon release to the atmosphere can be reversed by reforestation and restoration of degraded ecosystems (Rodríguez et al., 2008).
Some areas in Mexico are privately owned and their managers dedicate them to conservation in order to protect part of the country's biological capital (Semarnat, 2013). Despite having these areas, there are few studies that have been conducted on them to determine their carbon sequestration (Roldán et al., 2010; Cuellar and Larrea, 2016; Mora et al., 2017). The objective of the research was to evaluate the carbon storage that the plant communities and their main species gather in the ecological reserve of the company Ternium, Pesquería, Nuevo León State, Mexico, to determine which of these rerecords the highest carbon content.
Materials and Methods
Study area
The research was carried out in the Ecological Reserve of the company Ternium Mexico (Figure 1), whose area is 96.17 ha in the municipality Pesquería, Nuevo León; Its geographical coordinates are 25°45´25” N and 99°58´07” W, at 306 meters above sea level. The climate of the place corresponds to dry BS0hw according to the Köppen classification modified by García (1988). The average annual temperature is 20 to 22 °C, the annual rainfall varies between 500 and 700 mm (INEGI, 1986). The soils present are: Castañosem, Vertisol, Leptosol, Chernozem and Fulisol (INEGI, 1986). The predominant vegetation in the study area is the Tamaulipas thorny thicket (MET) with different successional states and degrees of disturbance. There are mature and other MET plant communities in different successional states of 2, 4 and 6 years of age due to applied ecological restoration practices (reforestation) and others in which, after the disturbance, secondary vegetation species prevail.
Figure 1. Location map of the study area.
Data collection
Preliminary tours were made in the study area during which differences were recognized in the structure of the plant community. These contrasts may be explained by to the orography and the history of the plant communities (Table 1). By means of satellite images taken from Google Earth Pro, the area was stratified to estimate the carbon of each specific area.
Table 1. Orographic characteristics and history of use of plant communities.
Vegetal community | Orography | History record |
Mature scrub | Valley | Without disturb |
Mature scrub | Valley | Without disturb |
Ash scrub | Hill | Without disturb |
Ash scrub | Hill | Without disturb |
Mature scrub | Low part of the basin | Without disturb |
Mezquite-Huizache | Valley | Regeneration |
Ash scrub | Hill | Without disturb |
6 year plantation | Valley | Plantation |
4 year plantation | Valley | Plantation |
2 year plantation | Valley | Plantation |
Based on the heterogeneity of the plant community, a random stratified sampling was made, and based on the orography, history of use and species composition, canopy coverage and density of individuals, 10 strata were defined, of which seven are of established vegetation before declaring it a conservation area and the remaining three are areas where ecological restoration activities were carried out.
A pre-sampling was carried out to determine the coefficient of determination and to estimate the number of sites needed to have representative information. The sample size was determined by means of the following mathematical model (Mostacedo and Fredericksen, 2000), based on the volume.
Where:
n = Number of sampling sites
E = Error (20 %)
t = Value taken from the Student t (P<0.05) tables
N = Total of sampling units of the whole population
CV = Variation coefficient
The rectangular sampling sites (10 × 20 m) (200 m2) were established randomly, based on the extreme coordinates of each area and by random numbers; in Excel, the sampling points of each stratum were obtained. According to the result of the mathematical model, 10 sites were established for each plant community (100 sites in total); where all individuals with a basimetric diameter > 3 cm were considered, and the total height (h) was measured with a HastingsTM E-15-1 telescopic rod, the basimetric diameter (d0.10) with a Haglöf Mantax Blue calliperTM 1270 mm and cup diameters (k) in NS and EO directions with a 10 m TruperTM flexometer.
Data analysis
To calculate the carbon storage of tree and shrub species, aerial biomass was determined using the allometric equation developed by Návar et al. (2004) for arboreal and shrub species of the Tamaulipas thorn scrub (r2 = 0.80):
Where:
BT = Total aerial biomass (Kg)
d = Basimetric diameter (cm)
h = Total height (m)
From the characteristic stem of Yucca filifera Chabaud whose shape is different from the scrubs and trees assessed, the following formula proposed by Návar (2008) was used:
Where:
BT = Total aerial biomass (Kg)
h = Total height (m)
Once the total aerial biomass was determined, the carbon content concentration was calculated by using the 45.4 % factor recommended by Yerena et al. (2011).
Results and Discussion
The flora of the study area comprises 16 families, 27 genera and 28 species (Table 2). The families with the highest number of species were: Fabaceae with nine, Asteraceae, Boraginaceae, Cannabaceae and Euphorbiaceae with two species; the rest of the families register only one species The Fabaceae family is one of the most representative in the scrub communities of the state, being the species Acacia farnesiana (L.) Willd. and Acacia rigidula Benth. of the most important within these plant communities in terms of dominance (Estrada et al., 2004; Jiménez et al., 2009).
Table 2. Floristic list of the study area.
Family | Species | Common name | Life form |
Asparagaceae | Yucca filifera Chabaud | Yuca | Tree |
Asteraceae | Baccharis salicifolia (Ruíz & Pav.) Pers. | Jarilla | Scrub |
Gymnosperma glutinosum (Spreng.) Less. | Escobilla | Scrub | |
Boraginaceae | Cordia boissieri A. DC. | Anacahuita | Tree |
Ehretia anacua (Terán &Berland.) I.M. Johnst. | Anacua | Tree | |
Cactaceae | Cylindropuntia leptocaulis (DC.) F.M. Knuth | Tasajillo | Scrub |
Cannabaceae | Celtis pallida Torr. | Granjeno | Scrub |
Ebenaceae | Diospyros texana Scheele | Chapote | Tree |
Euphorbiaceae | Bernardia myricifolia (Scheele) S. Watson | Oreja de ratón | Scrub |
Croton cortesianus Kunth | Croton | Scrub | |
Fabaceae | Acacia farnesiana (L.)Willd. | Huizache | Tree |
Acacia rigidula Benth. | Chaparro prieto, gavia | Scrub | |
Caesalpinia mexicana A. Gray | Hierba del potro | Tree | |
Cercidium macrum I.M. Johnst. | Palo verde | Tree | |
Ebenopsis ebano (Berland.) Barneby & J.W. | Ébano | Tree | |
Eysenhardtia texana Scheele | Vara dulce | Tree | |
Havardia pallens (Benth.) Britton & Rose | Tenaza | Tree | |
Parkinsonia aculeata L. | Retama | Tree | |
Prosopis glandulosa Torr. | Mezquite | Tree | |
Oleaceae | Forestiera angustifolia Torr. | Panalero | Scrub |
Passifloraceae | Turnera diffusa Willd. | Damiana | Scrub |
Rhamnaceae | Karwinskia humboldtiana (Schult.) Zucc. | Coyotillo | Scrub |
Rutaceae | Zanthoxylum fagara (L.) Sarg. | Colima | Scrub |
Sapotaceae | Sideroxylon celastrinum (Kunth) T.D. Peen. | Coma | Scrub |
Scrophulariaceae | Leucophyllum frutescens (Berland.) I.M. Johnst. | Cenizo | Scrub |
Simaroubaceae | Castela erecta Turpin | Crucillo | Scrub |
Zygophyllaceae | Guaiacum angustifolium Engelm. | Guayacán | Scrub |
Table 3 shows the 10 strata registered in the conservation area. The plant community dominated by Mezquite and Huizache has the highest total biomass and carbon stored with 102.44 and 46.10 Mg ha-1, respectively (Table 3), followed by mature scrub communities.
Table 3. Total biomass and carbon content by stratum.
Vegetal community | Surface area (ha) | TB (Mg ha-1) | C (Mg ha-1) | C (Mg) per vegetal community |
Mature scrub 1 | 19.76 | 17.24 | 7.76 | 153.34 |
Mature scrub 2 | 16.86 | 47.43 | 21.34 | 359.79 |
Ash scrub 1 | 5.37 | 14.82 | 6.67 | 35.82 |
Ash scrub 2 | 8.16 | 17.16 | 7.72 | 63.00 |
Mature scrub 3 | 9.71 | 26.56 | 11.95 | 116.03 |
Mezquite-Huizache | 12.78 | 102.44 | 46.1 | 589.16 |
Ash scrub 3 | 1.71 | 22.23 | 10 | 17.10 |
6 year plantation | 12 | 21.38 | 9.62 | 116.52 |
4 year plantation | 2.2 | 8.73 | 3.93 | 8.71 |
2 year plantation | 7.62 | 5.57 | 2.50 | 19.13 |
Sums and averages | Σ = 96.17 | = 28.36 | = 12.76 | Σ = 1 228.09 |
With the exception of reforested areas and Mezquite and Huizache, plant communities recorded biomass values between 14.82 Mg ha-1 to 47.43 Mg ha-1. These recorded biomass values are similar to those reported by different authors such as Návar et al. (2002), Návar et al. (2004), Návar (2008), who report values of 12.93, 36.75, 44.40 and 48.40 Mg ha-1 respectively for the thorny thicket, respectively, while Yerena et al. (2011) recorded a value of 25 Mg ha-1. The plantation areas recorded lower total biomass and stored carbon, since the vegetation in these areas is younger and smaller. Despite this situation, the plantation with six years presents higher values than the communities called Ash scrub 1 and 2, which are dominated by the Leucophyllum frutescens (Berland.) I. M. Johnst. Shrub, so reforestation activities are giving positive results in biomass production.
In general, the Ternium ecological reserve area stores an average of 28.36 Mg ha-1 of biomass, which is equivalent to 12.76 Mg ha-1 of carbon. The mature scrub has an average carbon content of 13.68 Mg ha-1 which resembles the values reported by Yerena et al. (2011) of 11.70 Mg ha-1 in a primary scrub, while for areas with different uses, the values were 4.67 and 2.98 Mg ha-1; the former coincides with the local plantation areas, where the plants are still young. In the Mezquite-Huizache area, the values obtained are higher than those of Yerena et al. (2015) for a 30-year-old mezquital area, where 18.83 Mg ha-1 were calculated.
Within each plant community or stratum dominant species were identified in the area according to the concentration of total biomass and carbon. Table 4 shows the taxa of each stratum. Prosopis glandulosa Torr., A. farnesiana and Cercidium macrum I. M. Johnst. They have the largest total biomass and stored carbon, with 34.96 % of the total biomass. These species are important for their great abundance and dominance in plant communities; they belong to the Fabaceae family, which has been referred to as the most representative in the scrubs of the state (Rojas, 1965; Rzedowski, 1978; Briones and Villarreal, 2001).
Table 4. Mensuration characteristics, total biomass (Mg ha-1) and Carbon (Mg ha-1) of the vegetal communities of the study area.
Species | Individuals (ha-1) | Average height (m) | Average diameter (cm) | Average crown area (cm2) | TB (Mg ha-1) | C (Mg ha-1) |
Mature scrub 1 | ||||||
Acacia farnesiana (L.)Willd. | 119 | 4.9 | 13.5 | 4.6 | 5.47 | 2.46 |
Havardia pallens (Benth.) Britton & Rose | 531 | 3.7 | 5.9 | 1.8 | 1.80 | 1.17 |
Ebenopsis ebano (Berland.) Barneby & J.W. | 25 | 9.1 | 30 | 7.3 | 0.08 | 0.84 |
Cordia boissieri A. DC. | 6 | 2.9 | 8.9 | 1.9 | 0.04 | 0.81 |
Acacia rigidula Benth. | 31 | 2.7 | 4.1 | 1.3 | 0.07 | 0.81 |
Cercidium macrum I.M. Johnst. | 75 | 3.5 | 9.1 | 2.7 | 1.38 | 0.62 |
Prosopis glandulosa Torr. | 125 | 3.5 | 9.2 | 2.3 | 1.81 | 0.39 |
Sideroxylon celastrinum (Kunth) T.D. Peen. | 44 | 2.1 | 4.5 | 2.1 | 0.11 | 0.16 |
Forestiera angustifolia Torr. | 6 | 2.9 | 4.3 | 2.3 | 0.16 | 0.13 |
Diospirus texana Scheele | 6 | 3.7 | 13 | 2.7 | 1.87 | 0.07 |
Leucophyllum frutescens (Berland.) I.M. Johnst. | 6 | 1.5 | 3.7 | 1.3 | 0.03 | 0.06 |
Croton cortesianus Kunth | 19 | 1.9 | 4 | 1.7 | 0.04 | 0.05 |
Zanthoxylum fagara (L.) Sarg. | 94 | 2 | 4.1 | 1.7 | 0.29 | 0.04 |
Karwinskia humboldtiana (Schult.) Zucc. | 6 | 1.5 | 3.9 | 1.2 | 0.01 | 0.04 |
Bernardia myricaefolia (Scheele) S. Watson | 363 | 2 | 4.3 | 1.7 | 2.59 | 0.04 |
Celtis pallida Torr. | 38 | 2 | 3.6 | 1.3 | 0.09 | 0.03 |
Eysenhardtia texana Scheele | 56 | 2 | 3.7 | 1.5 | 0.12 | 0.02 |
Castela erecta Turpin | 31 | 3.1 | 6.5 | 1.8 | 0.86 | 0.02 |
Ehrieta anacua (Terán &Berland.) I.M. Johnst. | 113 | 2 | 6 | 1.9 | 0.35 | 0.01 |
Gymnosperma glutinosum (Spreng.) Less. | 38 | 1.1 | 3.5 | 0.7 | 0.10 | 0.01 |
Sum | 1731 | 2.91 | 7.29 | 43.80 | 17.24 | 7.76 |
Mature scrub 2 | ||||||
Cercidium macrum I.M. Johnst. | 45 | 4.7 | 30.1 | 3.9 | 1.34 | 12.95 |
Acacia rigidula Benth. | 860 | 2.8 | 6.5 | 2.1 | 8.84 | 3.98 |
Havardia pallens (Benth.) Britton & Rose | 35 | 3.8 | 7 | 2.6 | 0.07 | 0.90 |
Cordia boissieri A. DC. | 55 | 2.8 | 10 | 2.2 | 0.24 | 0.73 |
Ebenopsis ébano (Berland.) Barneby & J.W. | 50 | 4.3 | 13.6 | 3.5 | 28.77 | 0.72 |
Acacia farnesiana (L.)Willd. | 110 | 3.9 | 9.9 | 3.5 | 1.63 | 0.60 |
Prosopis glandulosa Torr. | 130 | 2.7 | 9.3 | 2.4 | 0.23 | 0.37 |
Forestiera angustifolia Torr. | 35 | 2.1 | 4.4 | 1.8 | 1.61 | 0.27 |
Eysenhardtia texana Scheele | 175 | 2.3 | 3.6 | 1.7 | 0.46 | 0.21 |
Leucophyllum frutescens (Berland.) I.M. Johnst. | 180 | 1.7 | 4.7 | 1.8 | 0.61 | 0.21 |
Celtis pallida Torr. | 190 | 1.9 | 4.5 | 1.5 | 1.98 | 0.11 |
Croton cortesianus Kunth | 35 | 1.2 | 3.3 | 0.8 | 0.20 | 0.10 |
Karwinskia humboldtiana (Schult.) Zucc. | 105 | 1.7 | 4.8 | 1.2 | 0.46 | 0.09 |
Zanthoxylum fagara (L.) Sarg. | 50 | 1.3 | 4.1 | 1.2 | 0.81 | 0.06 |
Castela erecta Turpin | 20 | 1.9 | 3.6 | 1.9 | 0.05 | 0.03 |
Sideroxylon celastrinum (Kunth) T.D. Peen. | 50 | 1.3 | 4.4 | 1.1 | 0.13 | 0.02 |
Sum | 2125 | 2.53 | 7.74 | 33.20 | 47.43 | 21.34 |
Ash scrub 1 | ||||||
Cercidium macrum I.M. Johnst. | 435 | 4.3 | 12.9 | 3.6 | 2.05 | 2.27 |
Cordia boissieri A. DC. | 20 | 2.4 | 10.5 | 2.3 | 0.10 | 1.94 |
Leucophyllum frutescens (Berland.) I.M. Johnst. | 70 | 1.8 | 3.6 | 1.7 | 5.04 | 1.01 |
Acacia rigidula Benth. | 175 | 2.3 | 5.1 | 1.8 | 4.32 | 0.92 |
Yucca filifera Chabaud | 25 | 5.1 | 29 | 4.2 | 0.07 | 0.14 |
Havardia pallens (Benth.) Britton & Rose | 25 | 1.8 | 5.1 | 1.8 | 0.05 | 0.10 |
Forestiera angustifolia Torr. | 110 | 1.6 | 3.1 | 1.3 | 0.21 | 0.09 |
Zanthoxylum fagara (L.) Sarg | 10 | 1.8 | 3.3 | 1.8 | 0.03 | 0.06 |
Celtis pallida Torr. | 55 | 1.9 | 4.3 | 1.7 | 0.21 | 0.04 |
Karwinskia humboldtiana (Schult.) Zucc. | 30 | 1 | 3.2 | 1 | 0.08 | 0.04 |
Croton cortesianus Kunth | 1060 | 1.5 | 3.4 | 1.3 | 2.24 | 0.03 |
Eysenhardtia texana Scheele | 20 | 1.3 | 3.2 | 1.1 | 0.30 | 0.02 |
Guaiacum angustifolium Engelm. | 55 | 1.8 | 3.5 | 0.4 | 0.13 | 0.01 |
Sum | 2090 | 2.20 | 6.94 | 24.00 | 14.82 | 6.67 |
Ash scrub 2 | ||||||
Cercidium macrum I.M. Johnst. | 11 | 4.7 | 14 | 4 | 1.10 | 1.31 |
Leucophyllum frutescens (Berland.) I.M. Johnst. | 622 | 1.9 | 3.8 | 1.9 | 2.45 | 1.30 |
Baccharis salicifolia (Ruíz & Pav.) Pers. | 817 | 5.2 | 3.7 | 2.9 | 2.49 | 1.12 |
Acacia rigidula Benth. | 33 | 2.4 | 4.5 | 2.1 | 0.08 | 1.10 |
Cordia boissieri A. DC. | 28 | 2.4 | 9.4 | 2.3 | 2.90 | 0.78 |
Acacia farnesiana (L.)Willd. | 94 | 3.9 | 18.5 | 2.4 | 1.74 | 0.50 |
Eysenhardtia texana Scheele | 111 | 2 | 3.1 | 1.5 | 0.18 | 0.46 |
Prosopis glandulosa Torr. | 6 | 3.9 | 17 | 3.9 | 0.17 | 0.31 |
Karwinskia humboldtiana (Schult.) Zucc. | 594 | 1.4 | 3.1 | 1.4 | 1.01 | 0.28 |
Havardia pallens (Benth.) Britton & Rose | 106 | 2.7 | 5.8 | 2.2 | 0.18 | 0.16 |
Yucca filifera Chabaud | 56 | 7.2 | 37.5 | 1.6 | 0.36 | 0.11 |
Forestiera angustifolia Torr. | 383 | 2.3 | 3 | 1.4 | 0.63 | 0.08 |
Croton cortesianus Kunth | 1300 | 1.1 | 3 | 0.8 | 2.89 | 0.08 |
Diospyros texana Scheele | 11 | 3.4 | 15 | 3.4 | 0.68 | 0.08 |
Celtis pallida Torr. | 11 | 2.3 | 4 | 2.3 | 0.24 | 0.04 |
Zanthoxylum fagara (L.) Sarg. | 11 | 2.2 | 4 | 2.6 | 0.04 | 0.02 |
Sum | 4194 | 3.06 | 9.34 | 36.70 | 17.16 | 7.72 |
Mature scrub 3 | ||||||
Prosopis glandulosa Torr. | 150 | 4.3 | 14.4 | 4 | 2.44 | 3.09 |
Acacia rigidula Benth. | 1480 | 3.7 | 4.5 | 1.5 | 6.02 | 2.71 |
The three species with the greatest dimensions in this research are also those with the highest value index values in areas of MET regenerated naturally after agricultural and livestock activities (Alanís et al., 2008; Jiménez et al., 2009). Several studies suggest that the importance of Fabaceae in MET is attributable to the wide range of reactions they have to support and tolerate limiting factors, such as ecophysiological responses to water stress (González and Cantú, 2001; López et al., 2010; González et al.; 2011a, b).
In the specific case of A. farnesiana, it is a species of rapid establishment in disturbed areas forming dense associations known as huizachales (Estrada et al., 2004; Leal et al., 2018); P. glandulosa dominates areas of secondary vegetation, it is abundant in overgrazed areas, abandoned crop fields (Estrada et al., 2014) and in the lower parts of the basins (Alanís et al., 2017); while C. macrum is characteristic of the northern region of the state, in plains and mountains (Estrada et al., 2005).
Conclusions
The plant communities of the Tamaulipan thorny scrub of the Ternium ecological reserve, Pesquería, have high variability in carbon storage, values in recently planted areas of 2.51 Mg ha-1 up to high values in mature communities established in the lower part of the basin (46.1 Mg ha-1). In general, the Ternium ecological reserve area stores 1 228.09 Mg of carbon, which is equivalent to an average of 12.76 Mg ha-1. The species with the highest total biomass and stored carbon were the Fabaceae: P. glandulosa, A. farnesiana and C. macrum with 34.96 % of the total biomass.
Acknowledgements
The Ternium company is thanked for all the facilities granted to carry out the work in the field. The authors also thank the staff of RENAC, S.A. from C.V. and Geoprospect, S.A. from C.V. companies for support in logistics and field activities.
Conflict of interests
The authors declare no conflict of interests.
Contribution by author
Ana María Patiño Flores: conceptualization of the research, review of the database, data analysis, writing of the original draft; Eduardo Alanís Rodríguez: conceptualization of the research, review of the database, review of the data analysis, writing of the methodology and review and editing of the manuscript; Víctor Manuel Molina Guerra: conceptualization of research, coordination in field work, review of data analysis and of the manuscript; Humberto González Rodríguez: database review, data analysis and review and editing of the manuscript; Enrique Jurado: conceptualization of the research, review of the database and review and editing of the manuscript; Oscar Alberto Aguirre Calderón: database review, data analysis and review and editing of the manuscript.
References
Alanís, E., J. Jiménez, O. Aguirre, E. Treviño, E. Jurado y M. González. 2008. Efecto del uso del suelo en la fitodiversidad del matorral espinoso tamaulipeco. Ciencia UANL 11(1):56-62.
Alanís R., E., V. M. Molina G., , J. Jiménez P., , E. A. Rubio C., A. Mora O., A. C. Chávez C. and J. J. Marroquín C. 2017. Composition, structure and diversity of a mesquite in Pesquería (Northeastern Mexico). Revista Chilena de Historia Natural. 90:4. https://doi.org/10.1186/s40693-017-0066-1.
Briones, O. L. y J. A. Villarreal. 2001. Vegetación y flora de un ecotono entre las provincias del Altiplano y de la Planicie Costera del Noreste de México. Acta Botanica Mexicana 55: 39-67 + un mapa. http://www1.inecol.edu.mx/publicaciones/resumeness/ABM/ABM.55.2001/acta55(39-67).pdf (5 de noviembre de 2018).
Brown, S. 1999. Guidelines for inventorying and monitoring carbon offsets in forest-based projects. Winrock International for the World Bank. Arlington, VA USA. 11 p.
Cuellar, S. y D. Larrea. 2016. Pérdida de carbono por deforestación reciente (2010-2013) en las tierras bajas y Yungas de Bolivia. Ecología en Bolivia. 51(1): 15-25.
Secretaría del Medio Ambiente y Recursos Naturales. 2013. Ley General del Equilibrio Ecológico y la Protección del Ambiente. Diario Oficial de la Federación. México, D.F., México. 128 p.
Dudley, N., S. Mansourian, S. Stolton and S. Suksuwan. 2008. Safety Net: Protected areas and poverty reduction (Áreas protegidas y reducción de la pobreza). WWF International. Gland, Suiza. 183 p.
Estrada C., E., C. Yen, A. Delgado y J. Villarreal, 2004. Leguminosas del centro del estado de Nuevo León, México. Anales del Instituto de Biología, UNAM. Serie Botánica. 75(1): 78-85.
Estrada C., E., J. A. Villarreal-Quintanilla y Jurado E. 2005. Leguminosas del norte del estado de Nuevo León, México. Acta Botanica Mexicana 73:1-18.
Estrada, A., E. Delgado y J. A. Villarreal. 2014. Las leguminosas de Nuevo León. Universidad Nacional Autónoma de México, Instituto de Biología, UNAM. 307 p.
Figueroa N., C., J. D. Etchevers B., A. Velásquez M. y M. Acosta M. 2005. Concentración de carbono en diferentes tipos de vegetación de la Sierra Norte de Oaxaca. Terra 23(1):57-64.
García, E. 1988. Modificaciones al Régimen de Clasificación Climática de Köppen. México. Instituto de Geografía, UNAM. México, D.F., México. 134 p.
González R., H. e I. Cantú S. 2001. Adaptación a la sequía de plantas arbustivas de matorral espinoso tamaulipeco. Ciencia UANL 4(4): 454-461.
González R., H., I. Cantú S., R. G. Ramírez L., M. V. Gómez M., M. Pando M. y J. M. López H. 2011a. Potencial hídrico xilemático en cuatro especies arbustivas nativas del noreste de México. Revista Chapingo, Serie Ciencias Forestales y del Ambiente 17: 97-109. http://dx.doi.org/10.5154/r.rchscfa.2010.09.080.
González R., H., I. Cantú S., R. G. Ramírez L., M. V. Gómez M., J. I. Sarquís R., N. Coria G., J. R. Cervantes M. and R. K. Maiti. 2011b. Xylem water potentials of native shrubs from northeastern Mexico. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science 61(3): 214-219. DOI: 10.1080/09064711003693211.
Halffter, G. 2011. Reservas de la biósfera: problemas y oportunidades en México. Acta Zoológica Mexicana. 27(1): 177-189.
Instituto Nacional de Estadística y Geografía (INEGI). 1986. Síntesis Geográfica de Nuevo León. México, D. F., México. Secretaria de Programación y Presupuesto. INEGI. México, D.F., México. 170 p.
Jiménez, J., E. Alanís, O. Aguirre, M. Pando y M. A. González. 2009. Análisis sobre el efecto del uso del suelo en la diversidad estructural del matorral espinoso tamaulipeco. Revista Madera y Bosques. 15(3):5-20.
Leal, N.A., E. Alanís, J. M. Mata, E. J. Treviño y J. I. Yerena. 2018. Estructura y diversidad del matorral espinoso tamaulipeco regenerado postganadería en el noreste de México. Polibotánica 45: 75-88. https://doi.org/10.18387/polibotanica.45.6.
López H., J. M., H. González R., I. Cantú S., R. G. Ramírez L., M. V. Gómez M., M. Pando M., J. I. Sarquís R., N. Coria G., M. Ratikanta and N. C. Sarkar. 2010. Adaptation of native shrubs to drought stress in Northeastern Mexico. International Journal of Bio-resource and Stress Management 1(1): 30-37.
Mora, J., N. Ulloa, B. Quezada y L. López. 2017. El carbono acumulado en la masa arbórea de la Reserva Biológica Uyuca, Honduras. Ceiba 54(2): 139-146. https://doi.org/10.5377/ceiba.v54i2.3369.
Mostacedo, B. y T. S. Fredericksen. 2000. Manual de métodos básicos de muestreo y análisis en ecología vegetal. BOLFOR. Santa Cruz, Bolivia. 87 pp.
Návar, J., E. Mendez and V. Dale, 2002. Estimating stand biomass in the Tamaulipan thornscrub of northeastern Mexico. Annals of Forest Science 59: 813-821. https://doi.org/10.1051/forest:2002079.
Návar, J., E. Mendez, J. Graciano, V. Dale and B. Parresol. 2004. Biomass equations for shrub species of Tamaulipan thornscrub of northeastern Mexico. Journal of Arid Environments, 59: 657-674. https://doi.org/10.1016/j.jaridenv.2004.02.010.
Návar, J. 2008. Carbon fluxes resulting from land-use changes in the Tamaulipan thornscrub of northeastern Mexico. Carbon Balance and Management, 3: 6 https://doi.org/10.1186/1750–0680–3–6.
Rodríguez, R., J. Jiménez, J. Meza, O. Aguirre y R. Razo. 2008. Carbono contenido en un bosque tropical subcaducifolio en la reserva de la biosfera El Cielo, Tamaulipas, México. Revista Latinoamericana de Recursos Naturales 4(2): 215 -222.
Rojas M., P. 1965. Generalidades sobre la vegetación del estado de Nuevo León y datos acerca de su flora. Tesis de doctorado, Facultad de Ciencias, Universidad Nacional Autónoma de México, México, D. F., México. 124 p.
Roldán, M., A. Carminant, F. Biganzoli y J. Paurelo, 2010. Las reservas privadas ¿son efectivas para conservar las propiedades de los ecosistemas? Ecología Austral. 20: 185-199.
RzedowskI, J. 1978. Vegetación de México. Limusa. México. D. F., México. pp. 97-110.
Schulze, E. D., Ch. Wirt and M. Heimann. 2000. Managing forest after Kyoto. Science 289(5487):2058-2059. DOI: 10.1126/science.289.5487.2058.
Toledo, V. M. 2005. Repensar la conservación: ¿áreas naturales protegidas o estrategia bioregional? Gaceta Ecológica. 77: 67-83.
Yerena Y., J. I., J. Jiménez P., O. A. Aguirre C. y E. J. Treviño G. 2011. Concentración de carbono en la biomasa aérea del matorral espinoso tamaulipeco. Revista Chapingo Serie Ciencias Forestales y del Ambiente. 17(2): 283-291. http://dx.doi.org/10.5154/r.rchscfa.2010.02.004.
Yerena Y., J. I., J. Jiménez, E. Alanís, M. Pompa, O. A. Aguirre C. y E. J. Treviño G. 2015. Contenido de carbono en la biomasa aérea del mezquital con historial agrícola, en México. Interciencia 40(10):722-726.
All the texts published by Revista Mexicana de Ciencias Forestales –with no exception– are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentione