Revista Mexicana de Ciencias Forestales Vol. 17 (93)

Enero - Febrero (2026)

Logotipo, nombre de la empresa

Descripción generada automáticamente

DOI: https://doi.org/10.29298/rmcf.v17i93.1594

Research article

 

Potential distribution of Pinus cembroides Zucc. under scenarios from the Coupled Model Intercomparison Project in Mexico

Distribución potencial de Pinus cembroides Zucc. ante escenarios del Proyecto de Intercomparación de Modelos Acoplados en México

 

Julio Nemorio Martínez-Sánchez1, Tereza Cavazos2, Homero Alejandro Gárate-Escamilla1, Wibke Himmelsbach1, Eduardo Alanís Rodríguez1, José Israel Yerena Yamallel1, Gerardo Cuéllar-Rodríguez1*

 

Fecha de recepción/Reception date: 20 de agosto de 2025.

Fecha de aceptación/Acceptance date: 9 de diciembre de 2025.

_______________________________

1Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales. México.

2Centro de Investigación Científica y de Educación Superior de Ensenada. México.

 

*Autor para correspondencia; correo-e: luis.cuellarrd@uanl.edu.mx

*Correponding author; e-mail: luis.cuellarrd@uanl.edu.mx

 

Abstract

Pinus cembroides is a piñon conifer resistant to dry conditions and is widely distributed in arid and semi-arid areas of Mexico, making it ideal for assessing the impacts of climate change on conifer forests. The impacts of climate change on the potential distribution of Pinus cembroides in Mexico was assessed, considering two climatic scenarios from the Coupled Model Intercomparison Project Phase 6 (CMIP6): SSP2-4.5 (projected increase of 2.1 to 3.5 °C in mean temperature by the end of the twenty-first century) and SSP5-8.5 (projected increase of 3.3 to 5.7 °C). Modeling was based on the maximum entropy algorithm (MaxEnt), using 1 696 records of P. cembroides and 19 bioclimatic variables from CHELSA v2.1. The variables with the highest contributions were the temperature of the driest quarter (60.9 %) and the wettest quarter (28.9 %). Under the current climate conditions, only 6.3 % of mountainous regions in the Sierra Madre Oriental and Sierra Madre Occidental exhibited high suitability. Future changes in distribution were projected using a CMIP6 Multi-Model Ensemble (MME) in four periods: near-term (2021-2040), mid-term (2041-2060), far-term (2061-2080), and end of XXI century (2081-2100). In both scenarios, the potential distribution is projected to contract to ~10 % of its current extent by the end of the 21st century, limited to higher and wetter areas of low to medium suitability in Sierra de Juárez and Sierra Madre Oriental.

Keywords: Climate change, CHELSA, CMIP6, species distribution, MaxEnt, distribution models.

Resumen

Pinus cembroides es una conífera piñonera resistente a condiciones secas y está ampliamente distribuida en zonas áridas y semiáridas de México, por lo que es ideal para evaluar los impactos del cambio climático en los bosques de coníferas. Se evaluaron los impactos de ese fenómeno sobre la distribución potencial de P. cembroides en México, a partir de dos escenarios climáticos de la Fase 6 del Proyecto de Intercomparación de Modelos Acoplados (CMIP6): SSP2-4.5 (incremento proyectado de 2.1 a 3.5 °C en la temperatura media hacia finales del siglo XXI) y SSP5-8.5 (incremento proyectado de 3.3 a 5.7 °C). La modelación se realizó con el algoritmo de máxima entropía (MaxEnt), empleando 1 696 registros de P. cembroides y 19 variables bioclimáticas de CHELSA v2.1. Las variables con mayor contribución fueron la temperatura del aire en el trimestre más seco (60.9 %) y en el trimestre más húmedo (28.9 %). Bajo las condiciones climáticas actuales, solo 6.3 % de las regiones montañosas de la Sierra Madre Oriental y la Sierra Madre Occidental mostraron alta idoneidad. Los cambios en la distribución futura se proyectaron mediante un Ensamble Multi-Modelo (EMM) del CMIP6 en el corto plazo (2021-2040), mediano plazo (2041-2060), largo plazo (2061-2080) y finales del siglo XXI (2081-2100). En ambos escenarios, la distribución potencial disminuye hasta ~10 % del área actual a finales del siglo XXI, limitada a zonas más elevadas y húmedas de baja a media idoneidad en la Sierra de Juárez y la Sierra Madre Oriental.

Palabras clave: Cambio climático, CHELSA, CMIP6, distribución de especies, MaxEnt, modelos de distribución.

 

   

 

Introduction

 

 

Since the 1970s, significant alterations in global precipitation and temperature patterns associated with climate change have been recorded (Intergovernmental Panel on Climate Change [IPCC], 2023a; Trenberth, 2011). The Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) projects that, without mitigation measures, the global average temperature will increase between 1.2 and 2.0 °C by 2050 and between 2.0 and 4.0 °C by the end of the 21st century (IPCC, 2023b). In Northern Mexico, the temperature has increased by 0.3 °C per decade over the last thirty years (Cavazos et al., 2020), and under high-emission scenarios, an increase of more than 4.5 °C is projected in the coming decades (Almazroui et al., 2021).

Forest ecosystems are highly vulnerable to climate change (Hansen & Phillips, 2015). Their response can manifest in three ways: (1) Adaptation to the new conditions within their current distribution, (2) Local extinction, or (3) Altitudinal or latitudinal displacement toward more favorable environments (Sáenz-Romero et al., 2017).

The analysis of these impacts has been carried out using species distribution models (SDMs), which integrate presence records with current and projected bioclimatic variables (Pearson et al., 2007). These models allow the identification of climatically suitable areas and the quantification of factors that limit distribution, constituting a key tool for forest conservation and management (Geng et al., 2022). Among the available algorithms, the maximum entropy algorithm (MaxEnt) has been widely used in the study of coniferous forests in Mexico (Manzanilla-Quijada & Treviño-Garza, 2024).

Mexico is home to nearly half of the species of the Pinus L. genus (Martínez-Sifuentes et al., 2020). Most are restricted to mountainous regions, which increases their vulnerability to climate change (Gómez-Pineda et al., 2020). Projections based on Representative Concentration Pathways (RCPs) scenarios from CMIP5 (Coupled Model Intercomparison Project Phase 5) indicate a contraction of temperate forests, particularly at their xeric limits (Sáenz-Romero et al., 2015).

More recently, these scenarios have been complemented by Shared Socioeconomic Pathways (SSPs) from CMIP6, which integrate socioeconomic development narratives with different levels of radiative forcing (Eyring et al., 2016). Of the five proposed scenarios, SSP2-4.5 represents an intermediate path with a radiative forcing of 4.5 W m2 and a projected increase of 2.1 to 3.5 °C by the end of the 21st century, while SSP5-8.5 corresponds to a development based on fossil fuels and high Greenhouse Gas (GHG) emissions, with a forcing of 8.5 W m2 and an increase of 3.3 to 5.7 °C (Eyring et al., 2016; O’Neill et al., 2016).

Pinus cembroides Zucc. is the most widely distributed pinyon pine in Mexico (Constante-García et al., 2009). It is found in transition zones between xerophytic formations of the Mexican Plateau, as well as in the Sierra Madre Oriental, Sierra Madre Occidental and the Trans-Mexican Volcanic Belt (Carlón-Allende et al., 2018). It is characterized by its adaptability and resistance to prolonged droughts and extreme temperatures.

This study evaluates the impact of climate change on the potential distribution of P. cembroides using the MaxEnt maximum entropy algorithm and CHELSA v2.1 (Karger et al., 2017) data for the current climate and future projections from CMIP6. The specific objectives were: (1) To identify the climatic variables that determine its distribution, (2) To estimate changes in its potential distribution under two climate change scenarios, and (3) To locate suitable areas for its conservation in the coming decades.

 

 

Materials and Methods

 

 

The study area corresponds to the geographic distribution of P. cembroides in Mexico, from semi-arid zones in the North to subtropical regions in the Central and Southern parts of the country (García & Comisión Nacional para el Conocimiento y Uso de la Biodiversidad [Conabio], 1998). P. cembroides populations are located between 1 350 and 3 500 masl, where temperatures range from 7 to 40 °C and annual rainfall varies from 360 to 800 mm (Constante-García et al., 2009).

Occurrence data were obtained from the National Forest and Soil Inventory (Infys) of the National Forest Commission (Comisión Nacional Forestal [Conafor], 2018) for the period 2009-2014 and the National Biodiversity Information System (SNIB) of Conabio (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad [Conabio], 2020). A spatial autocorrelation analysis was applied, and only one presence data point was considered per 1 km2 cell, eliminating duplicate records.

Nineteen bioclimatic variables from CHELSA v2.1 (CHELSA, 2025; Karger et al., 2017) were used for the 30-year reference climate period of 1981–2010 (current climate) and the future periods 2021-2040, 2041-2060, 2061-2080, and 2081-2100, considering the SSP2-4.5 and SSP5-8.5 scenarios, at a spatial resolution of 1 km2. The data were downloaded using the Python 3.8 package chelsa_cmip6_1.0 (Karger et al., 2023). CHELSA v2.1 (Karger et al., 2017) shows a lower correlation with topography and a more accurate representation of precipitation and temperature variables in mountainous regions compared to WorldClim v2.1 (Bobrowski et al., 2021). To reduce multicollinearity between variables, a variance inflation factor (VIF) analysis was applied, establishing as an exclusion criterion a value greater than 10 (Dormann et al., 2013), so that highly correlated variables were discarded.

The selected bioclimatic variables were: diurnal temperature range (Bio 2), isothermality (Bio 3), temperature of the wettest quarter (Bio 8), of the driest quarter (Bio 9), annual precipitation (Bio 12), of the driest month (Bio 14), of the warmest quarter (Bio 18), and of the coldest quarter (Bio 19).

The potential distribution of Pinus cembroides was modeled using MaxEnt v3.4.4 software (Phillips et al., 2006). Previous studies have demonstrated that MaxEnt offers statistically reliable predictive capacity compared to other algorithms (Araújo & New, 2007). Seventy-five percent of the presence records were used to train the model, with the remaining 25 % reserved for validation (Merow et al., 2013; Phillips et al., 2006). The MaxEnt logistic output, which generates species suitability values (Phillips & Dudík, 2008) was used, with a maximum of 500 iterations and 10 000 background data points. A combination of linear, quadratic, and product classes was used with a convergence limit of 0.00001. Based on these values, the following classification thresholds were established: unsuitable (<0.1), low suitability (0.1-0.3), medium suitability (0.3-0.6), and high suitability (>0.6) (Zhong et al., 2023). To reduce extrapolation, the extrapolate and clamping functions were disabled (Elith et al., 2011).

The relative importance of each bioclimatic variable was determined using the Jackknife test (Phillips et al., 2006). Model performance was evaluated using the area under the curve (AUC) receiver operating characteristic (ROC) curve, considering the following classification ranges: insufficient (0.5-0.6), poor (0.6-0.7), good (0.8-0.9), and excellent (0.9-1.0) (Aguirre-Gutiérrez & Duivenvoorden, 2010). Values close to 1 indicate a greater correspondence between the selected bioclimatic variables and the potential distribution of the species (Phillips & Dudík, 2008).

The individual use of general circulation models (GCMs) increases the uncertainty of SDM projections due to biases in temperature and precipitation (Stewart et al., 2022). Therefore, it is recommended to use ensembles of different GCMs to obtain more robust results (Thuiller et al., 2019). A Multi-Model Ensemble (MME) was generated from the GCMs that best represented current climate variability. Specifically, 25 GCMs from CMIP6 (Earth System Grid Federation [ESGF], 2025) were compared with monthly CRU data (Harris et al., 2014) for the period 1995-2014. The metrics considered included Pattern correlation coefficient (PCC), Centered mean squared error (CRMSE), Mean absolute error (MAE), bias, Taylor Skill Index (TSS), and Normalized standard deviation (NSTD). GCMs with PCC and TSS values close to 1, and CRMSE, MAE, NSTD, and bias values close to 0, were selected (Colorado-Ruiz et al., 2018). This model selection strengthens confidence in the validity of future projections (Knutti et al., 2017). The selected models were used to generate bioclimatic layers for each scenario across the four analyzed periods.

The distribution projections obtained for the different scenarios were compared using the bioclimatic variables derived from the MME. To assess the differences between the current and projected surface areas, the relative percentage change (%CR) was calculated using Equation 1 (Gutiérrez-García et al., 2015). Finally, stable or conserved areas, areas of gain, and areas of loss were identified using QGIS software version 3.16 (QGIS, 2020).

 

     (1)

 

Where:

Si = Future area in each scenario

So = Total area

 

 

Results and Discussion

 

 

A total of 1 696 records of P. cembroides were obtained nationwide. The model based on the MaxEnt algorithm showed high predictive capacity, with an AUC value of 0.894 (Aguirre-Gutiérrez & Duivenvoorden, 2010). This result supports the reliability of the model for predicting the potential distribution of P. cembroides. MaxEnt is one of the most widely used algorithms in conifer studies in Mexico (Manzanilla-Quiñones et al., 2019) because it only requires presence data and offers statistically reliable predictive capacity compared to other individual algorithms and ensemble-based methods. However, it should be considered that projections are vulnerable to biases that can lead to statistical overestimation (Araújo & New, 2007).

The bioclimatic variables Bio 9 and Bio 8 explained 60.9 % and 28.9 % of the variability, respectively (Table 1).

 

Table 1. Relative contribution (%) of the variables used in the spatial distribution of Pinus cembroides Zucc.

Variable

Description

Contribution (%)

Bio 9

Temperature of the driest quarter

60.9

Bio 8

Temperature of the wettest quarter

28.9

Bio 12

Annual precipitation

3.4

Bio 2

Diurnal temperature range

3.0

Bio 3

Isothermality

2.1

Bio 18

Precipitation of the warmest quarter

1.6

Bio 14

Precipitation of the driest month

0.1

Bioclimatic variables: Temperature (°C), Precipitation (mm)

 

These results are consistent with studies that indicate a greater influence of thermal variables compared to rainfall variables in species of the genus Pinus, using WorldClim v2.1 (Gómez-Pineda et al., 2020; Martínez-Sánchez et al., 2023). Although some studies based on this same system have discarded the variables Bio 8, Bio 9, Bio 18, and Bio 19 due to discontinuities in precipitation distribution (Escobar et al., 2014), this study decided to retain them, since CHELSA v2.1 describes the influence of topography on precipitation in greater detail (Karger et al., 2017). Furthermore, the use of these indicators allows for a more accurate representation of interannual variability and ecological limitations in areas with seasonal climatic fluctuations (Booth, 2022). In general, high temperatures are considered to predict the distribution of geographically widespread species such as P. cembroides (Manzanilla-Quijada & Treviño-Garza, 2024).

The current distribution of P. cembroides includes the Sierra Madre Oriental, the Sierra Madre Occidental and the Trans-Mexican Volcanic Belt (Figure 1). 3.17×105 km2 (55.8 %), 2.15×105 km2 (37.8 %) and 3.60×104 km2 (6.3 %) were estimated in the low, medium and high suitability categories, respectively.

 

Unsuitable (<0.1), low suitability (0.1-0.3), medium suitability (0.3-0.6), high suitability (>0.6).

Figure 1. Potential distribution of Pinus cembroides Zucc. during the period 1981-2010.

 

Areas classified as having low suitability were concentrated primarily in much of the Sierra Madre Oriental, the Sierra Madre Occidental and the Trans-Mexican Volcanic Belt, as well as in the Sierra de San Pedro Mártir, the Sierra de Juárez and the Mexican Plateau (states of Querétaro, Guanajuato, San Luis Potosí and Zacatecas). Areas of medium suitability were distributed in isolated strips of the Sierra Madre Occidental (states of Chihuahua and Durango) and the Sierra Madre Oriental (state of Nuevo León). In contrast, regions with high suitability were restricted to specific sectors of Chihuahua, Durango, Coahuila, Nuevo León, San Luis Potosí and Puebla.

In general, the geographic distribution of the areas modeled as suitable is consistent with that reported in previous studies (Martínez-Sánchez et al., 2023; Téllez-Valdés et al., 2019). Furthermore, the potential projection exceeds the current geographic range, a common behavior in species distribution models (SDMs) based exclusively on bioclimatic variables (Soberón & Peterson, 2005).

Based on Taylor diagrams (Figure 2), the selected GCMs for the MME were ACCESS-CM2, EC-Earth3-Veg, FIO-ESM-2-0, HadGEM-GC31-LL, MPI-ESM1-2-HR, and UKESM1-0-LL. These models showed greater correlation and less bias in simulating the regional historical climate, and were therefore considered appropriate for averaging their projections within the MME (Almazroui et al., 2021).

 

A = Precipitation (Pr); B = Mean temperature (Tas); C = Maximum temperature (Tasmax); D = Minimum temperature (Tasmin).

Figure 2. Taylor diagrams for the period 1995 to 2014.

 

Figure 3 shows the variations in the suitability areas for P. cembroides under the SSP2-4.5 and SSP5-8.5 scenarios. In both cases, the model projects a progressive decrease in the areas with low, medium, and high suitability throughout all the analyzed periods.

 

A, C, E and G = SSP2-4.5 scenarios; B, D, F and G = SSP5-8.5 scenarios.

Figure 3. Potential distribution of Pinus cembroides Zucc. in the short (2021-2040), medium (2041-2060), long (2061-2080) and very long term (2081-2100) according to the Multi-Model Ensemble (MME).

 

During the reference period (1981-2010), the ideal area was 5.68×105 km2. Under the SSP2-4.5 scenario, a reduction to 3.6×105 km2 is projected in 2021-2040, 2.9×105 km2 in 2041-2060, 2.5×105 km2 in 2061-2080 and 2.0×105 km2 in 2081-2100. In the SSP5-8.5 scenario, the decrease is more pronounced, with values of 3.6×105 km2, 2.3×105 km2, 1.5×105 km2 and 0.5×105 km2 in the periods 2021-2040, 2041-2060, 2061-2080 and 2081-2100, respectively. The suitability areas are summarized in Table 2.

Table 2. Predicted area (×105 km2) of suitability regions for Pinus cembroides Zucc. during the study periods according to the Multi-Model Ensemble (MME).

Suitability

1981-2010

2021-2040

2041-2060

2061-2080

2081-2100

 

 

SSP2-4.5

SSP5-8.5

SSP2-4.5

SSP5-8.5

SSP2-4.5

SSP5-8.5

SSP2-4.5

SSP5-8.5

Low

(0.1-0.3)

3.2

2.4

1.9

1.7

1.5

 

 

2.3

1.6

1.2

0.5

Medium

(0.3-0.6)

2.1

1.2

0.9

0.7

0.4

 

 

1.2

0.7

0.3

0.02

High

(>0.6)

0.4

0.08

0.03

0.02

<0.1

 

 

0.06

0.01

<0.1

<0.1

 

In all cases, areas of low suitability are the most extensive, but also those that suffer the greatest reduction, while areas of high suitability are currently very small and practically disappear under both scenarios. Most of the currently suitable areas will be lost in the main mountain ranges (Sierra Madre Oriental, Sierra Madre Occidental and Trans-Mexican Volcanic Belt). In the most extreme scenario, SSP5-8.5, for 2081–2100 (Figure 4H), a reduction of nearly 90 % of the potential distribution is projected.

 

Figure 4. Changes in the potential distribution of Pinus cembroides Zucc. according to the Multi-Model Ensemble (MME).

 

During 2021-2040, P. cembroides would maintain part of its distribution in Chihuahua and Nuevo León under both scenarios (Figures 4A and 4B). The emergence of new suitable areas in state of Baja California (Sierra de Juárez) and Durango is also projected for 2021-2040 and 2041-2060 (Figures 4A and 4C). These areas would tend to shift to higher elevations between 2081 and 2100 and could disappear under SSP5-8.5 (Figure 4H).

The areas of land gain represent <5 % of the total surface area, indicating a very limited expansion potential. In contrast, stable areas comprise between 40 % and 64 % for most of the period, suggesting their persistence for several decades; however, under SSP2-4.5, their proportion drops below 50 % from 2041 to 2060 onward (Table 3).

 

Table 3. Changes (%) in the distribution area of Pinus cembroides Zucc. in the short term (2021-2040), medium term (2041-2060), long term (2061-2080), and very long term (2081-2100) under the SSP2-4.5 and SSP5-8.5 scenarios according to the Multi-Model Ensemble (MME).

 

SSP2-4.5

SSP5-8.5

Period

P

S

G

P

S

G

2021-2040

-36.5

63.5

+1.2

-37.1

62.9

+1.2

2041-2060

-50.3

49.6

+0.5

-59.2

40.7

+0.5

2061-2080

-56.0

43.9

+0.7

-73.6

26.4

+0.3

2081-2100

-65.3

34.7

+0.7

-90.3

9.7

+0.1

P = Loss; S = Stable; G = Gain.

 

The CMIP6 scenarios project a more severe contraction of P. cembroides habitat compared to equivalent estimates under CMIP5 (Gómez-Díaz et al., 2011), particularly in the SSP5-8.5 scenario. This latter scenario anticipates a 4.0-4.5 °C increase in the regional mean temperature by 2081-2100 (Almazroui et al., 2021), which would intensify the Bio 8 and Bio 9 bioclimatic variables in Northern and Central Mexico. Consequently, increased water stress for the species is projected, associated with greater moisture deficits and evapotranspiration, which would negatively affect its growth and adaptive capacity (Manzanilla-Quijada & Treviño-Garza, 2024).

However, stable areas are projected to persist in the Sierra Madre Oriental and Sierra Madre Occidental, while new areas of limited suitability are expected to emerge in Baja California, Coahuila, Nuevo León and Puebla. These patterns align with studies based on CMIP5 (Romero-Sánchez et al., 2017), suggesting the presence of potential climate refuges for the species despite the adverse impacts of climate change.

The centroid of current climate suitability for P. cembroides (Figure 5), located around 25.2° N and 103.8° W, shows a consistent Northwestward shift trend throughout the 21st century in both scenarios. Under SSP2-4.5, the projected shift is ~40–50 km by the end of the century (2081-2100), while under SSP5-8.5 it reaches 70-80 km. Even by mid-century, a significant shift under SSP5-8.5 (~40 km in 2041-2060) is already evident compared to that projected under SSP2-4.5 (~20 km). This pattern coincides with the loss of suitable areas in Southern and lower-altitude regions, and with the persistence of climate refuges at higher latitudes and elevations.

 

Figure 5. Centroid of the distribution of Pinus cembroides Zucc. under future climate conditions.

 

 

Implications for conservation

 

 

Species migration is a natural process that occurs gradually over multiple generations (Klisz et al., 2023). However, the speed of climate change in recent decades exceeds the natural dispersal and adaptation capacity of many species and ecosystems. When environmental conditions change faster than species can adjust, the persistence of P. cembroides and other species with similar ecological traits is compromised (Aitken et al., 2008).

In this context, assisted migration (AM) has emerged as a management strategy to facilitate the establishment of populations in habitats with more favorable future climatic conditions (Bower et al., 2024; Palik et al., 2022). In the case of P. cembroides, moving genotypes to more northerly or higher-elevation regions could anticipate the loss of local populations and promote the colonization of areas identified by models as climate refuges. The effectiveness of AM depends on rigorous protocols for selecting genetic material (e. g., origins from warmer and drier environments), establishment trials, and adaptive monitoring that allows for adjusting densities, silvicultural treatments, and genetic mixtures based on performance (Palik et al., 2022). At the same time, it is a priority to protect locations that could serve as natural refuges—particularly on the summits of the Sierra Madre Occidental and Oriental, where persistent suitability is projected—since these areas could concentrate the remaining genetic diversity of the species toward the end of the century (Haire et al., 2022).

In addition to in-situ protection, maintaining and restoring ecological connectivity between current and future habitat fragments is crucial to reducing demographic and genetic costs during migrations. Establishing biological corridors that link remnant populations with projected refuge areas would facilitate the natural migration of P. cembroides along altitudinal and latitudinal gradients, increasing its chances of persistence and maintaining gene flow between subpopulations (Cantú-Garza, 2015). These connectivity measures tend to generate co-benefits for co-occurring species, promoting the ecological integrity of the landscape in the face of climate change (Mawdsley et al., 2009).

Protected Natural Areas (PNAs) are critical nodes for sustaining these processes. In addition to conserving key habitats, they can function as “bridges” across environmental gradients and facilitate movement toward climatically more favorable zones (Chacón-Prieto et al., 2021). However, their future effectiveness may be limited if climatic niches shift outside their boundaries (Aguirre-Gutiérrez & Duivenvoorden, 2010). Therefore, it is strategic to incorporate climate projections into systematic conservation planning, create new protected natural areas (PNAs) or expand existing ones in areas identified as refuges, and strengthen connectivity through altitudinal and latitudinal corridors that link remaining populations with projected refuges (Mawdsley et al., 2009). These actions would also benefit numerous co-occurring species, contributing to the ecological integrity of the landscape.

From a forest management perspective, our results guide policies and restoration programs focused on priority sites. Identifying areas of potential loss and future refuges allows for directing reforestation and adaptive management toward higher elevations, which would become relevant as the last strongholds of P. cembroides. In these sites, restoration with seedlings of native drought-tolerant species and the incorporation of genotypes from arid zone populations could increase resilience to warmer and drier conditions (Palik et al., 2022). These measures can be integrated with national instruments—such as the National Ecological Restoration Strategy, National Forest Commission adaptation programs, and payment schemes for environmental services (Conafor, 2020)—always under rigorous protocols for the selection of genetic material, subsequent monitoring, and risk assessment (for example, alteration of recipient communities or low survival rates due to edaphic or biotic limitations not represented in the models).

 

 

Conclusions

 

 

The MaxEnt model, combined with high-resolution climate data from CHELSA v2.1 and a Multi-Model Ensemble (MME) from CMIP6, indicates a significant reduction in the distribution area under the SSP2-4.5 and SSP5-8.5 scenarios throughout the 21st century, with a more severe contraction under SSP5-8.5. In the latter scenario, it is estimated that by the end of the century only about 10 % of the currently suitable areas will remain, restricted mainly to mountainous regions. The temperatures of the driest (Bio 9) and wettest (Bio 8) quarters were identified as the main climatic factors limiting the species' distribution in Mexico.

The methodological approach employed helps reduce uncertainty in the projections and facilitates the identification of ecological corridors and potential climate refuges. This information is a key input for designing adaptation strategies—including assisted migration—and for implementing conservation and forest management plans focused on building the resilience of P. cembroides to climate change in Mexico.

Implementing these measures requires rigorous protocols for genetic selection and ecological assessment, as well as coordination among the scientific community, government authorities, and local stakeholders. Furthermore, associated risks must be considered, such as the disruption of host communities or the low viability of transplanted populations in the face of edaphic or biotic limitations not accounted for in climate models.

 

Acknowledgments

 

The authors wish to express their gratitude to the National Council for Humanities, Sciences and Technologies (Conahcyt) for the first author's scholarship. To the National Academy of Research and Development for providing its facilities for this research work.

 

Conflict of Interest

 

The authors declare no conflict of interest. Eduardo Alanís Rodríguez states that he did not participate in the editorial process of the manuscript. 

 

Contribution by author

 

Julio Nemorio Martínez-Sánchez, Homero Alejandro Gárate-Escamilla, and Gerardo Cuéllar-Rodríguez: information search, potential distribution modeling, data review, writing of the manuscript; Tereza Cavazos: climate databases, manuscript review; Wibke Himmelsbach, Eduardo Alanís Rodríguez and José Israel Yerena Yamallel: manuscript review.

 

 

 

 

 

References

Aguirre-Gutiérrez, J., & Duivenvoorden, J. F. (2010). Can we expect to protect threatened species in protected areas? A case study of the genus Pinus in Mexico. Revista Mexicana de Biodiversidad, 81(3), 875-882. https://doi.org/10.22201/ib.20078706e.2010.003.657

Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., & Curtis-McLane, S. (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications, 1(1), 95–111. https://doi.org/10.1111/j.1752-4571.2007.00013.x

Almazroui, M., Islam, M. N., Saeed, F., Saeed, S., Ismail, M., Ehsan, M. A., Diallo, I., O’Brien, E., Ashfaq, M., Martínez-Castro, D., Cavazos, T., Cerezo-Mota, R., Tippett, M. K., Gutowski Jr., W. J., Alfaro, E. J., Hidalgo, H. G., Vichot-Llano, A., Campbell, J. D., Kamil, S., … Barlow, M. (2021). Projected changes in temperature and precipitation over the United States, Central America, and the Caribbean in CMIP6 GCMs. Earth Systems and Environment, 5, 1-24. https://doi.org/10.1007/s41748-021-00199-5

Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1), 42-47. https://doi.org/10.1016/j.tree.2006.09.010

Bobrowski, M., Weidinger, J., & Schickhoff, U. (2021). Is new always better? Frontiers in global climate datasets for modeling treeline species in the Himalayas. Atmosphere, 12(5), Article 543. https://doi.org/10.3390/atmos12050543

Booth, T. H. (2022). Checking bioclimatic variables that combine temperature and precipitation data before their use in species distribution models. Austral Ecology, 47(7), 1506-1514. https://doi.org/10.1111/aec.13234

Bower, A. D., Frerker, K. L., Pike, C. C., Labonte, N. R., Palik, B. J., Royo, A. A., Anderson, S. M., Ferreira, A. R., & Brandt, L. A. (2024). A practical framework for applied forestry assisted migration. Frontiers in Forests and Global Change, 7, Article 1454329. https://doi.org/10.3389/ffgc.2024.1454329

Cantú-Garza, A. (2015). Identificación de refugios climáticos utilizando modelos de distribución potencial para el Noreste de México [Tesis de Maestría en Ciencias en Sistemas Ambientales, Instituto Tecnológico y de Estudios Superiores de Monterrey]. ResearchGate. https://www.researchgate.net/publication/328891064_Identificacion_de_refugios_climaticos_utilizando_modelos_de_distribucion_potencial_para_el_Noreste_de_Mexico

Carlón-Allende, T., Mendoza, M. E., Villanueva-Díaz, J., & Li, Y. (2018). Climatic response of Pinus cembroides Zucc. radial growth in Sierra del Cubo, Guanajuato, Mexico. Trees, 32, 1387-1399. https://doi.org/10.1007/s00468-018-1720-1

Cavazos, T., Luna-Niño, R., Cerezo-Mota, R., Fuentes-Franco, R., Méndez, M., Pineda-Martínez, L. F., & Valenzuela, E. (2020). Climatic trends and regional climate models intercomparison over the CORDEX-CAM (Central America, Caribbean, and Mexico) domain. International Journal of Climatology, 40(3), 1396-1420. https://doi.org/10.1002/joc.6276

Chacón-Prieto, F., Rodríguez-Soto, C., Cuervo-Robayo, A. P., Carbajal-Monroy, J. C., & Alagador, D. (2021). Protected areas in Central Mexico—are they fit in promoting species persistence under climate and land use changes? Biological Conservation, 260, Article 109186. https://doi.org/10.1016/j.biocon.2021.109186

CHELSA. (2025). CHELSA: Climatologies at high resolution for the earth’s land surface areas [Data sets]. Swiss Federal Institute for Forest, Snow and Landscape Research. https://chelsa-climate.org/

Colorado-Ruiz, G., Cavazos, T., Salinas, J. A., De Grau, P., & Ayala, R. (2018). Climate change projections from Coupled Model Intercomparison Project phase 5 multi-model weighted ensembles for Mexico, the North American monsoon, and the mid-summer drought region. International Journal of Climatology, 38(15), 5699-5716. https://doi.org/10.1002/joc.5773

Comisión Nacional Forestal. (2018). Inventario Nacional Forestal y de Suelos [Base de datos]. Secretaría de Medio Ambiente y Recursos Naturales. https://snmf.cnf.gob.mx/infys/

Comisión Nacional Forestal. (2020, 16 de enero). Apoyos CONAFOR. Gobierno de México, México. https://www.gob.mx/conafor/acciones-y-programas/apoyos-conafor

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. (2020). Sistema Nacional de Información sobre Biodiversidad de México [Base de datos]. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. https://www.snib.mx/

Constante-García, V., Villanueva-Díaz, J., Cerano-Paredes, J., Cornejo-Oviedo, E. H., & Valencia-Manzo, S. (2009). Dendrocronología de Pinus cembroides Zucc. y reconstrucción de precipitación estacional para el sureste de Coahuila. Revista Ciencia Forestal en México, 34(106), 17-39. https://cienciasforestales.inifap.gob.mx/index.php/forestales/article/view/685

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., García-Marquéz, J. R., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27-46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

Earth System Grid Federation. (2025). Data search results have changed, see News for details ESGF CMIP6 search [Data MetaGrid]. Earth System Grid Federation. https://aims2.llnl.gov/search/cmip6/

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

Escobar, L. E., Lira-Noriega, A., Medina-Vogel, G., & Townsend-Peterson, A. (2014). Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference. Geospatial Health, 9(1), 221-229. https://doi.org/10.4081/gh.2014.19

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016

García, E., & Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. (1998). Climas. Catálogo de metadatos geográficos [Conjunto de metadatos]. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. http://geoportal.conabio.gob.mx/metadatos/doc/html/clima1mgw.html

Geng, W., Li, Y., Sun, D., Li, B., Zhang, P., Chang, H., Rong, T., Liu, Y., Shao, J., Liu, Z., Zhu, H., Lou, Y., Wang, Q., & Zhang, J. (2022). Prediction of the potential geographical distribution of Betula platyphylla Suk. in China under climate change scenarios. PLoS ONE, 17(3), Article e0262540. https://doi.org/10.1371/journal.pone.0262540

Gómez-Díaz, J. D., Monterroso-Rivas, A. I., Tinoco-Rueda, J. A., Toledo-Medrano, M. L., Conde-Álvarez, C., & Gay-García, C. (2011). Assessing current and potential patterns of 16 forest species driven by climate change scenarios in Mexico. Atmósfera, 24(1), 31-52. https://www.revistascca.unam.mx/atm/index.php/atm/article/view/23801

Gómez-Pineda, E., Sáenz-Romero, C., Ortega-Rodríguez, J. M., Blanco-García, A., Madrigal-Sánchez, X., Lindig-Cisneros, R., Lopez-Toledo, L., Pedraza-Santos, M. E., & Rehfeldt, G. E. (2020). Suitable climatic habitat changes for Mexican conifers along altitudinal gradients under climatic change scenarios. Ecological Applications, 30(2), Article e02041. https://doi.org/10.1002/eap.2041

Gutiérrez-García, J. V., Rodríguez-Trejo, D. A., Villanueva-Morales, A., García-Díaz, S., & Romo-Lozano, J. L. (2015). Calidad del agua en la producción de Pinus cembroides Zucc. en vivero. Agrociencia, 49(2), 205-219. https://www.agrociencia-colpos.org/index.php/agrociencia/article/view/1141

Haire, S. L., Villarreal, M. L., Cortés-Montaño, C., Flesch, A. D., Iniguez, J. M., Romo-Leon, J. R., & Sanderlin, J. S. (2022). Climate refugia for Pinus spp. in topographic and bioclimatic environments of the Madrean sky islands of México and the United States. Plant Ecology, 223, 577-598. https://doi.org/10.1007/s11258-022-01233-w

Hansen, A. J., & Phillips, L. B. (2015). Which tree species and biome types are most vulnerable to climate change in the US Northern Rocky Mountains? Forest Ecology and Management, 338, 68-83. http://dx.doi.org/10.1016/j.foreco.2014.11.008

Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 Dataset. International Journal of Climatology, 34(3), 623-642. https://doi.org/10.1002/joc.3711

Intergovernmental Panel on Climate Change. (2023a). SPM - Summary for policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, Y. Chen, L. Goldfarb, M. I. Gomis, J. B. R. Matthews, S. Berger, M. Huang, O. Yelekçi, R. Yu, B. Zhou, E. Lonnoy, T. K. Maycock, T. Waterfield, K. Leitzell, & N. Caud, (Eds.), Climate Change 2021 - The physical science basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 3–32). Cambridge University Press. https://doi.org/10.1017/9781009157896.001

Intergovernmental Panel on Climate Change. (2023b). Climate Change 2023. Synthesis Report (H. Lee & J. Romero, Eds.). Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_FullVolume.pdf

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, Article 170122. https://doi.org/10.1038/sdata.2017.122

Karger, D. N., Chauvier, Y., & Zimmermann, N. E. (2023). chelsa-cmip6 1.0: a python package to create high resolution bioclimatic variables based on CHELSA ver. 2.1 and CMIP6 data. Ecography, 2023(6), Article e06535. https://doi.org/10.1111/ecog.06535

Klisz, M., Chakraborty, D., Cvjetković, B., Grabner, M., Lintunen, A., Mayer, K., George, J.-P., & Rossi, S. (2023). Functional traits of boreal species and adaptation to local conditions. In M. Montoro-Girona, H. Morin, S. Gauthier & Y. Bergeron (Eds.), Boreal forests in the face of climate change. Sustainable Management (pp. 323-355). Springer Cham. https://doi.org/10.1007/978-3-031-15988-6_12

Knutti, R., Sedláček, J., Sanderson, B. M., Lorenz, R., Fischer, E. M., & Eyring, V. (2017). A climate model projection weighting scheme accounting for performance and interdependence. Geophysical Research Letters, 44(4), 1909-1918. https://doi.org/10.1002/2016GL072012

Manzanilla-Quijada, G. E., & Treviño-Garza, E. J. (2024). Posibles efectos del cambio climático en la distribución potencial de especies arbóreas de bosque templado en Nuevo León, México. Ecosistemas y Recursos Agropecuarios, 11(3), Artículo e4189. https://doi.org/10.19136/era.a11n3.4189

Manzanilla-Quiñones, U., Aguirre-Calderón, Ó. A., Jiménez-Pérez, J., Treviño-Garza, E. J., & Yerena-Yamallel, J. I. (2019). Distribución actual y futura del bosque subalpino de Pinus hartwegii Lindl en el Eje Neovolcánico Transversal. Madera y Bosques, 25(2), Artículo e2521804. https://doi.org/10.21829/myb.2019.2521804

Martínez-Sánchez, J. N., Cuéllar-Rodríguez, L. G., Yerena-Yamallel, J. I., Cavazos, M. T., & Gárate-Escamilla, H. A. (2023). Comparación de bases de datos climáticos en la modelación de distribución potencial de Pinus cembroides Zucc. Revista Mexicana de Ciencias Forestales, 14(79), 135-158. https://doi.org/10.29298/rmcf.v14i79.1350

Martínez-Sifuentes, A. R., Villanueva-Díaz, J., Manzanilla-Quiñones, U., Becerra-López, J. L., Hernández-Herrera, J. A., Estrada-Ávalos, J., & Velázquez-Pérez, A. H. (2020). Spatial modeling of the ecological niche of Pinus greggi Engelm. (Pinaceae): a species conservation proposal in Mexico under climatic change scenarios. iForest, 13(5), 426–434. https://doi.org/10.3832/ifor3491-013

Mawdsley, J. R., O’Malley, R., & Ojima, D. S. (2009). A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conservation Biology, 23(5), 1080-1089. https://doi.org/10.1111/j.1523-1739.2009.01264.x

Merow, C., Smith, M. J., & Silander Jr., J. A. (2013). A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter. Ecography, 36(10), 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x

O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., & Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9, 3461-3482. https://doi.org/10.5194/gmd-9-3461-2016

Palik, B. J., Clark, P. W., D’Amato, A. W., Swanston, C., & Nagel, L. (2022). Operationalizing forest-assisted migration in the context of climate change adaptation: Examples from the eastern USA. Ecosphere, 13(10), Article e4260. https://doi.org/10.1002/ecs2.4260

Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Peterson, A. T. (2007). Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102-117. https://doi.org/10.1111/j.1365-2699.2006.01594.x

Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography, 31(2), 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

QGIS. (2020). QGIS Geographic Information System (Version 3.16.0) [Computer software]. QGIS Association. https://qgis.org

Romero-Sánchez, M. E., González-Hernández, A., Pérez-Miranda, R., Velasco-Bautista, E., & Moreno-Sánchez, F. (2017). Efecto del cambio climático a nivel local en la distribución potencial de cuatro especies forestales de la cuenca Río Bravo-San Juan, Coahuila, México. Agroproductividad, 10(8), 42-47. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/1073

Sáenz-Romero, C., Lamy, J.-B., Ducousso, A., Musch, B., Ehrenmann, F., Delzon, S., Cavers, S., Chałupka, W., Dağdaş, S., Hansen, J. K., Lee, S. J., Liesebach, M., Rau, H.-M., Psomas, A., Schneck, V., Steiner, W., Zimmermann, N. E., & Kremer, A. (2017). Adaptive and plastic responses of Quercus petraea populations to climate across Europe. Global Change Biology, 23(7), 2831-2847. https://doi.org/10.1111/gcb.13576

Sáenz-Romero, C., Rehfeldt, G. E., Ortega-Rodríguez, J. M., Marín-Togo, M. C., & Madrigal-Sánchez, X. (2015). Pinus leiophylla suitable habitat for 1961–1990 and future climate. Botanical Sciences, 93(4), 709-718. http://dx.doi.org/10.17129/botsci.86

Soberón, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1-10. https://doi.org/10.17161/bi.v2i0.4

Stewart, S. B., Fedrigo, M., Kasel, S., Roxburgh, S. H., Choden, K., Tenzin, K., Allen, K., & Nitschke, C. R. (2022). Predicting plant species distributions using climate-based model ensembles with corresponding measures of congruence and uncertainty. Diversity and Distributions, 28(5), 1105-1122. https://doi.org/10.1111/ddi.13515

Téllez-Valdés, O., Miguel-Talonia, C., Suárez-Mota, M. E., Álvarez-Espino, R. X., & Hernández-Moreno, M. M. (2019). Distribución potencial de las especies Pinaceae (Pinus) y Fagaceae (Quercus) de México [Informe final SNIB-CONABIO proyecto JM010]. Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. http://www.conabio.gob.mx/institucion/proyectos/resultados/InfJM010.pdf

Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N., & Zimmerman, N. E. (2019). Uncertainty in ensembles of global biodiversity scenarios. Nature Communications, 10, Article 1446. https://doi.org/10.1038/s41467-019-09519-w

Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47, 123-318. http://dx.doi.org/10.3354/cr00953

Zhong, X., Zhang, L., Zhang, J., He, L., & Sun, R. (2023). Maxent modeling for predicting the potential geographical distribution of Castanopsis carlesii under various climate change scenarios in China. Forests, 14(7), Article 1397. https://doi.org/10.3390/f14071397

 

 

        

Todos los textos publicados por la Revista Mexicana de Ciencias Forestales sin excepción– se distribuyen amparados bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.