Revista Mexicana de Ciencias Forestales Vol. 16 (87)
Enero - Febrero (2025)
DOI: https://doi.org/10.29298/rmcf.v16i87.1492 Research article Efecto del manejo forestal maderable sobre la estructura y diversidad del bosque de Pinus L. en Oaxaca, México Effect of timber forest management on the structure and diversity of the Pinus L. forest in Oaxaca state, Mexico Julio Aurelio Ruiz-Aquino1*, Javier Jiménez-Pérez1, Oscar Alberto Aguirre-Calderón1, Eduardo Alanís-Rodríguez1, Gerardo Rodríguez-Ortiz2 |
Fecha de recepción/Reception date: 24 de junio de 2024.
Fecha de aceptación/Acceptance date:19 de noviembre de 2024._______________________________
1Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales. México.
2Tecnológico Nacional de México, Instituto Tecnológico del Valle de Oaxaca. México.
*Autor para correspondencia;correo-e: aquino.12@hotmail.com
*Corresponding author; e-mail: aquino.12@hotmail.com
Abstract
Regeneration cutting methods in forest management generate changes in the vegetation structure. The objective was to evaluate two forest management methods and analyze the application of three forestry treatments: group selection, regeneration cutting of parent trees and individual selection (TS) on the structure of stands in Santa María Jaltianguis, Oaxaca state, Mexico. The evaluation was carried out in 2023 in 30 circular sites of 400 m2 in which the tree, shrub and herbaceous stratum were measured, all individuals were identified and the forest inventory variables of greatest interest were considered: diameter at breast height. The TS were differentiated using a generalized linear model and test of means (Tukey, 0.05). The greatest richness was recorded in the rainy season with a total of 49 species belonging to the Asteraceae, Pinaceae, Rosaceae and Fagaceae families; the effect of forestry treatments in the vegetation strata was more evident in herbaceous plants; in the tree stratum, Pinus patula was the species with the highest frequency and greatest importance (IVI), the highest diversity was obtained in the tree stratum, regeneration cutting treatment Shannon=2.25, and the lowest in individual selection cutting in the shrub stratum Shannon=1.27, presenting significant differences. These results are important to consider in the application of TS for decision making in forest management and conservation.
Key words: Tree stratum, herbaceous, diversity index, Importance Value Index, species richness, forestry treatments.
Resumen
El tratamiento de cortas de regeneración en el manejo de los bosques genera cambios en la estructura y diversidad de la vegetación. El objetivo fue evaluar dos métodos de manejo forestal y analizar la aplicación de tres tratamientos silvícolas: corta de regeneración de selección en grupos, corta de regeneración de árboles padres y selección individual (TS) sobre la diversidad y estructura de rodales en Santa María Jaltianguis, Oaxaca, México. La evaluación se realizó en 2023 en 30 sitios circulares de 400 m2, en los cuales se midió el estrato arbóreo, arbustivo y herbáceo; se identificaron todos los individuos y se consideró al diámetro normal como la variable dasométrica de mayor interés, además de conocer la distribución diamétrica irregular de los TS, los cuales se diferenciaron mediante un modelo lineal generalizado y la prueba de medias tipo Tukey (a=0.05). La mayor riqueza se registró en la temporada de lluvias con 49 especies pertenecientes a las familias Asteraceae, Pinaceae, Rosaceae y Fagaceae. El efecto de los tratamientos silvícolas fue más evidente en el estrato herbáceao; en el arbóreo, Pinus patula fue la especie más frecuente y de mayor importancia (IVI). La más alta diversidad de Shannon=2.25 se obtuvo en el estrato arbóreo, tratamiento de corta de regeneración de árboles padres; la más baja en corta de selección individual en el estrato arbustivo con Shannon=1.27, con diferencias significativas. Estos resultados deben considerarse en la aplicación de los TS para la toma de decisiones en el manejo y conservación de los bosques.
Palabras clave: Estrato arbóreo, herbáceas, índice de diversidad, Índice de Valor de Importancia, riqueza de especies, tratamientos silvícolas.
Introduction
Mexico's and the world's forests in general have experienced considerable deterioration in recent decades due to inappropriate public policies, the incorrect implementation of forest management programs, deforestation caused by various activities, natural and social phenomena (Romo et al., 2016). Research, evaluation and monitoring of forest management are essential to ensure the sustainability of ecosystems through management and conservation (Castellanos-Bolaños et al., 2008).
Today, forest ecosystems have gained relevance due to global phenomena such as climate change and the adoption of new perspectives that consider forests as providers of ecosystem services to society through sustainable forest management (Aguirre-Calderón, 2015). Forest management is associated with forest structure, timber production, and the provision of other goods and services (Rendón-Pérez et al., 2021).
The evaluation of forest structure is always of interest to forest managers, which serves to make decisions on the activities to be carried out to maintain or improve them, it is also essential for the development of better management practices and contributes to the conservation of biodiversity (Aguirre-Calderón, 2015). In the sustainable management of forest stands, it is essential to conserve biodiversity, maintain the forest composition, its associated values, and the ecosystem landscape (Hernández-Salas et al., 2013).
Changes in forest structure and diversity can be generated by selective harvesting and silvicultural practices that favor a select and reduced number of species (Corral et al., 2005). Ramírez et al. (2019) indicate that the implementation of silvicultural practices in temperate forests reduces the variety of species in the forest. Knowledge of the composition and variety of tree species in temperate forests is crucial for their management and conservation (Graciano-Ávila et al., 2017).
Assessing the impact of activities on species composition, with forest management it is much easier to conduct it within the most favorable levels, in terms of species richness, environmental value, ecosystem stability and economic value. Forest management is essential to preserve diversity, to adjust the structure at the population level and to describe the relationship of species through diversity indicators such as abundance, dominance and frequency (Hernández-Salas et al., 2013).
Therefore, it is important to consider the application of regeneration treatments, since they modify the structure of the forests; research on the structure of managed forests agrees that they are indicators of forest diversity (Corral et al., 2005) and with silvicultural interventions can be modified.
In the communal forests of the state of Oaxaca, Mexico, there are areas with clear problems for the establishment of regeneration of the taxa of greatest interest due to climatic conditions of high humidity, as well as the abundant presence of herbaceous plants and shrubs with a greater capacity to colonize and occupy available growth spaces, which causes an important imbalance in the composition of the forest; it is therefore important to generate management conditions that are more conducive to the establishment of natural regeneration of pine species, due to their intolerant characteristics (Servicios Técnicos Forestales de Santa María Jaltianguis [STF], 2017). The objective of this study was to evaluate two forest management methods and to analyze the effect of silvicultural treatments on the diversity and seasonal population structure in managed stands in the forests of Santa María Jaltianguis, Oaxaca state, Mexico. The hypothesis was to determine whether the application of silvicultural regeneration treatments modifies the diversity and structure of forests under forest management.
Materials and Methods
Study Area
The study area is located in the municipality of Santa María Jaltianguis, a Zapotec community in the Sierra Juárez of Oaxaca (Southern Mexico). The UTM location coordinates are 765345.90 m and 755789.00 m E, and 1927446.56 m and 1917737.00 m N, at an average altitude of 2 270 m (Figure 1). The climate is temperate sub-humid with summer rainfall and semi-warm sub-humid with summer rainfall; the types of soil present are: Luvisol (78.30 %), Acrisol (20.38 %), Fluvisol (0.86 %), and Cambisol (0.46 %) (STF, 2017).
Santa Ana Yareni = Santa Ana Yareni municipality; San Juan Evangelista Analco = San Juan Evangelista Analco municipality; San Juan Atepec = San Juan Atepec municipality; Ixtlán de Juárez = Ixtlán de Juárez municipality; Santa Catarina Ixtepeji = Santa Catarina Ixtepeji municipality; San Miguel del Río = San Miguel del Río municipality; Teococuilco de Marcos Pérez = Teococuilco de Marcos Pérez municipality.
Figure 1. Location of the study area.
Sampling sites
Thirty 400 m2 circular sample plots were established and measured, selectively located in areas under forest management: three plots for each annuality in a total of 10 annualities, where regeneration cutting treatments in group selection, regeneration cutting of parent trees, and individual selection were evaluated. These are management practices applied in forests in order to take advantage, improve and regenerate naturally existing species. Data on mensuration variables were collected in these plots; two forest management methods and their silvicultural treatments were evaluated. The Silvicultural Development Method (SDM) with the parent tree treatment and the Mexican Method of Management of Irregular Forests (MMOBI) with the individual selection and group selection treatments.
On-site evaluation
Four quadrants were delimited in the plots and the plant individuals of the existing species were identified; the mensuration variable of greatest interest was the normal diameter ≥7.5 cm, which was measured in centimeters with a model 800mm Mantax Blue Haglöf® Sweden’s caliper, with which the basal area was calculated using the following formula:
Where:
A = Surface area (m2)
= Constant value of 3.1416
d = Normal diameter converted to m
The number of individuals and species nomenclature was verified using the Tropicos® platform (Missouri Botanical Garden, 2022). For each site, the geographic coordinates and altitude (m) were recorded with the support of a model GPSMAP 64SC GARMIN® satellite geopositioner.
Analysis of the population structure of the areas under management
In each plot of 400 m2 a concentric site of 100 m2 was installed for the evaluation of the natural regeneration, the pine seedlings were counted, the diameter at the base was measured in (mm), this was done for the treatment of selection regeneration cutting in groups due to the short time of having applied the treatment (1 to 4 years). To evaluate the shrub stratum, which included individuals with heights greater than 25 cm, two 9 m2 sites, the species was recorded, the diameter (cm) at the base was measured with a model cal-6mp Truper® caliper, and the total height (m) was measured with a model geosw-5-5m Geo-surv® stadia rod (Rendón-Pérez et al., 2021). In each quadrant, 1 m2 sites were delimited to evaluate the herbaceous stratum and the existing species were recorded (Figure 2). Measurements were carried out during the rainy and dry seasons.
Figure 2. Design of plots and data collection sites.
The structural diversity, richness and composition of the tree, shrub and herbaceous stratum in the different treatments applied were evaluated using the alpha and beta diversity indexes with the Excel® program. The Margalef and Shannon indexes were used to determine alpha diversity and the Sørensen Similarity Index was used to determine beta diversity (Juárez-Agis et al., 2016; Leyva-López et al., 2010; Moreno, 2001).
Statistical analysis
Normality and homogeneity of variances were tested using the Shapiro-Wilk and Bartlett's test (a=0.05) with the UNIVARIATE procedure (Chávez-Pascual et al., 2017; García-Aguilar et al., 2021). The variables were transformed using
Results and Discussion
Species composition and richness
During the rainy season, a total of 49 plant species belonging to 25 families were recorded (Table 1). The highest richness was found in the herbaceous stratum with 31 taxa, followed by the arboreal stratum with 11, and the shrub stratum with seven; the first two strata shared seven species. Luna-Bautista et al. (2015) 41 species were identified in areas under forest management, with a dominance of taxa belonging to the Asteraceae, Fagacea and Fabaceae families; Vázquez-Cortez et al. (2018) obtained 12 species in the shrub stratum.
Table 1. Species richness during the rainy season in managed forests (species are presented in alphabetical order).
Species |
Common name |
Family |
Stratum: Shrub |
||
Arbutus xalapensis Kunth |
Texas madrone |
Ericaceae |
Baccharis conferta Kunth |
Chaparral broom |
Asteraceae |
Cercocarpus macrophyllus C. K. Schneid. |
Mountain mahogany |
Rosaceae |
Clethra lanata M. Martens & Galeotti |
Mexican clethra |
Clethraceae |
Litsea glaucescens Kunth |
Mexican bay leaf |
Lauraceae |
Prunus serotina Ehrh. |
Black cherry |
Rosaceae |
Rumex obtusifolius L. |
Bitter dock |
Polygonaceae |
Stratum: Tree |
||
Pinus ayacahuite C. Ehrenb. ex Schltdl. |
Ayacahuite pine |
Pinaceae |
Pinus douglasiana Martínez |
Douglas pine |
Pinaceae |
Pinus lawsoni Roezl ex Gordon |
Lawson’s pine |
Pinaceae |
Pinus leiophylla Schiede ex Schltdl. & Cham. var. leiophylla |
Smooth-leaf pine |
Pinaceae |
Pinus oaxacana Mirov |
Ocote |
Pinaceae |
Pinus patula Schltdl. & Cham. |
Mexican weeping pine |
Pinaceae |
Pinus pseudostrobus Lindl. |
Smooth-bark Mexican pine |
Pinaceae |
Quercus corrugata Hook. |
White oak |
Fagaceae |
Quercus crassifolia Bonpl. |
Chilillo oak |
Fagaceae |
Quercus laurina Bonpl. |
Laurel oak |
Fagaceae |
Quercus rugosa Neé |
Netleaf oak |
Fagaceae |
Stratum: Herbaceous |
||
Ageratum corymbosum Zuccagni |
Flat-top whiteweed |
Asteraceae |
Alchemilla pectinata Kunth |
Lady’s mantle |
Rosaceae |
Arenaria lanuginosa (Michx.) Rohrb. |
Spreading sandwort |
Caryophyllaceae |
Arracacia moschata (Kunth) DC. |
Musk Arracacia |
Apiaceae |
Calliandra houstoniana (Mill.) Standl. |
Tree powderpuff |
Fabaceae |
Ceanothus caeruleus Lag. |
Azure ceanothus |
Rhamnaceae |
Centropogon grandidentatus (Schltdl.) Zahlbr. |
Large-toothed centropogon |
Campanulaceae |
Cologania broussonetii (Balb.) DC. |
Mexican cologania |
Fabaceae |
Commelina tuberosa L. |
Blue spiderwort |
Commelinaceae |
Crusea coccinea DC. |
Saucer flower |
Rubiaceae |
Dahlia imperialis Roezl ex Ortgies |
Bell tree dahlia |
Asteraceae |
Elaphoglossum latifolium (Sw.) J. Sm. |
Broadleaf tonguefern |
Dryopteridaceae |
Fragaria mexicana Schltdl. |
Wild strawberry |
Rosaceae |
Fuchsia thymifolia Kunth |
Thyme-leaved fuchsia |
Onagraceae |
Gaultheria erecta Vent. |
Borrachera fruit |
Ericaceae |
Gnaphalium viscosum Kunth |
Sticky rabbit-tobacco |
Asteraceae |
Iostephane heterophylla Benth. |
Camorreal |
Asteraceae |
Maianthemum paniculatum (M. Martens & Galeotti) LaFrankie |
False Solomon’s seal |
Asparagaceae |
Matudanthus nanus (M. Martens & Galeotti) D. R. Hunt |
Motherwort |
Commelinaceae |
Oxalis latifolia Kunth |
Broadleaf woodsorrel |
Oxalidaceae |
Phytolacca rugosa A. Braun & C. D. Bouché |
Pokeberry |
Phytolaccaceae |
Polypodium californicum Kaulf. |
California polypody |
Polypodiaceae |
Pteridium arachnoideum (Kaulf.) Maxon |
Tropical brackenfern |
Dennstaedtiaceae |
Roldana angulifolia (DC.) H. Rob. & Brettell |
Angled thistle |
Asteraceae |
Roldana candicans (Née) Villaseñor, S. Valencia & Coombes |
Groundsel |
Asteraceae |
Rubus adenotrichos Schltdl. |
Tropical Highland blackberry |
Rosaceae |
Rubus glaucus Benth. |
Andean raspberry |
Rosaceae |
Russelia sarmentosa Jacq. |
Firecracker plant |
Plantaginaceae |
Salvia patens Cav. |
Gentian sage |
Lamiaceae |
Sambucus nigra L. |
Black elder |
Viburnaceae |
Tagetes lucida Cav. |
Sweet mace |
Asteraceae |
Litsea glaucescens Kunth was the only species registered in the Official Mexican Standard NOM-059-SEMARNAT-2010 of the Ministry of the Environment and Natural Resources (NOM-059-SEMARNAT-2010, 2010) as an endangered species; Matudanthus nanus (M. Martens & Galeotti) D. R. Hunt is a taxa endemic to the state of Oaxaca (García-Mendoza & Meave, 2011).
Most of the richness corresponded to the Asteraceae family (eight species), in which herbaceous species dominate; followed by the Pinaceae family (seven species),Rosaceae (six species), and Fagaceae (four species). Asteraceae is the most diverse (1 040 species) in the state of Oaxaca (Villaseñor, 2018). Rendón-Pérez et al. (2021) point out that the genera Pinus L. and Quercus L. include a larger number of species, among which the Pinaceae and Asteraceae families are prevalent.
A lower richness was observed during the dry season, with a total of 41 species, amounting to a reduction of 16.4 % (Figure 3). It should be noted that during the dry season, the establishment of certain herbaceous plants is conditioned (Yan et al., 2015). These results support the finding that species richness and diversity are higher during the rainy season.
Figure 3. Density of individuals in the rainy and dry seasons.
Effect of forest management on diameter structure
The group-selection regeneration cutting treatment in the 2018-2021 annual periods maintains a structure with an upward distribution as the diameter increases. The regeneration of trees aged 1, 2, 3, and 4 years increases their density as a response to the new developing forest (Figure 4A), favoring the renewal of Pinus species, as the treatment opens clearings that provide better conditions for the establishment of pines.
A = Group selection treatment; B = Regeneration cutting treatment; C = Individual selection treatment.
Figure 4. Diameter structure of the evaluated forestry treatments.
The regeneration cutting treatment applied in the 1993-2003 felling cycle exhibits an “inverted J” diameter distribution, which shows a high number of individuals at the initial stages of stand development and gradually decreases in frequency as the diameter increases. In this treatment, the predominant species were of the Pinus and Quercus, as well as other leafy species; Pinus still maintains a considerable volume due to a higher density of standing trees —trees of considerable dimensions, with diameters between 60 and 105 cm, and an average total height of 46 m—. The lack of a release cutting has prevented the release of established regrowth and has limited the ability to generate space for a broader natural regeneration of the Pinus genus(Figure 4B). Regeneration cutting is the stage at which most of the tree stratum is removed and the number of tree species is significantly reduced (Pérez-López et al., 2020).
The individual selection treatment exhibited an irregular diameter distribution (Figure 4C) due to the presence of different diameter classes resulting from the implementation of the Mexican Irregular Forest Management Method. This approach favors the natural regeneration of species with the greatest presence of individuals in the smallest diameter categories, notably of Quercus sp., Pinus sp., and other leafy species. It is crucial to consider this aspect in the management of these species and to promote the growth of those with economic and ecological value.
Leyva-López et al. (2010) consider that silvicultural or forestry treatments are not always applied with the required intensity, resulting in a different species composition.
It should be noted that, in the application of the group-selection regeneration cutting forestry treatment, the genus of the tree stratum with the lowest density was Pinus, with a total of 390 individuals’ ha-1 (Table 2), because the trees were felled to promote regeneration conditions during the 2018-2021 annual periods. A density of 3 796 individuals ha-1 was obtained for the shrub stratum, and of 174 167 individuals ha-1 total, for the herbaceous stratum. Rzedowski (2006) points out that the dominance of herbaceous plants is due to the greater amount of light and space, whose presence is attributed to their anemochorous seed propagation. In addition, they move very easily, which allows their annual distribution and is related to the amount of water available.
Table 2. Abundance, dominance, frequency, and Importance Value Index (IVI) by forestry treatments applied in the tree stratum of managed forests.
Species |
Abundance |
Dominance |
Frequency |
||||
Absolute |
Relative |
Absolute |
Relative |
Absolute |
Relative |
IVI |
|
(N ha-1) |
(%) |
(m2 ha-1) |
(%) |
(%) |
(%) |
||
|
Group-selection regeneration cutting treatment |
||||||
Pinus ayacahuite C. Ehrenb. ex Schltdl. |
38 |
9.63 |
0.00 |
0.27 |
4 |
16.67 |
8.85 |
Pinus lawsoni Roezl ex Gordon |
6 |
1.60 |
0.01 |
1.20 |
2 |
8.33 |
3.71 |
Pinus oaxacana Mirov |
133 |
34.22 |
0.15 |
18.32 |
3 |
12.50 |
21.68 |
Pinus patula Schltdl. & Cham. |
131 |
33.69 |
0.28 |
33.98 |
8 |
33.33 |
33.67 |
Pinus pseudostrobus Lindl. |
81 |
20.86 |
0.38 |
46.23 |
7 |
29.17 |
32.08 |
Total |
390 |
100 |
0.82 |
100 |
24 |
100 |
100 |
|
Parent-tree regeneration cutting treatment |
||||||
Litsea glaucescens Kunth |
11 |
2.22 |
0.13 |
0.34 |
2 |
5.26 |
2.61 |
Arbutus xalapensis Kunth |
11 |
2.22 |
1.45 |
3.91 |
3 |
7.89 |
4.68 |
Cercocarpus macrophyllus C. K. Schneid. |
6 |
1.11 |
0.14 |
0.37 |
1 |
2.63 |
1.37 |
Clethra lanata M. Martens & Galeotti |
69 |
13.89 |
1.22 |
3.29 |
4 |
10.53 |
9.23 |
Pinus douglasiana Martínez |
8 |
1.67 |
1.04 |
2.81 |
2 |
5.26 |
3.25 |
Pinus lawsoni Roezl ex Gordon |
44 |
8.89 |
1.64 |
4.41 |
1 |
2.63 |
5.31 |
Pinus oaxacana Mirov |
56 |
11.11 |
4.77 |
12.87 |
4 |
10.53 |
11.50 |
Pinus patula Schltdl. & Cham. |
97 |
19.44 |
8.33 |
22.46 |
7 |
18.42 |
20.11 |
Pinus pseudostrobus Lindl. |
39 |
7.78 |
8.32 |
22.46 |
3 |
7.89 |
12.71 |
Quercus crassifolia Bonpl. |
42 |
8.33 |
3.05 |
8.23 |
3 |
7.89 |
8.15 |
Quercus laurina Bonpl. |
56 |
11.11 |
5.00 |
13.49 |
4 |
10.53 |
11.71 |
Quercus rugosa Neé |
61 |
12.22 |
1.99 |
5.37 |
4 |
10.53 |
9.37 |
Total |
500 |
100 |
37.07 |
100 |
38 |
100 |
100 |
|
Individual-selection regeneration cutting treatment |
||||||
Arbutus xalapensis Kunth |
31 |
5.12 |
0.30 |
1.31 |
5 |
14.71 |
7.04 |
Pinus douglasiana Martínez |
42 |
6.98 |
6.67 |
28.74 |
5 |
14.71 |
16.81 |
Pinus lawsoni Roezl ex Gordon |
86 |
14.42 |
4.98 |
21.47 |
7 |
20.59 |
18.83 |
Pinus leiophylla Schiede ex Schltdl. & Cham. var. leiophylla |
3 |
0.47 |
0.38 |
1.66 |
1 |
2.94 |
1.69 |
Pinus oaxacana Mirov |
53 |
8.84 |
4.23 |
18.22 |
2 |
5.88 |
10.98 |
Quercus corrugata Mirov |
3 |
0.47 |
0.07 |
0.30 |
1 |
2.94 |
1.24 |
Quercus crassifolia Bonpl. |
108 |
18.14 |
1.14 |
4.91 |
5 |
14.71 |
12.58 |
Quercus rugosa Neé |
272 |
45.58 |
5.43 |
23.39 |
8 |
23.53 |
30.83 |
Total |
597 |
100 |
23.20 |
100 |
34 |
100 |
100 |
In the arboreal stratum, the parent trees regeneration treatment produced an abundance of 500 trees ha-1, of which 48.9 % belonged to the genus Pinus and 31.7 % to Quercus and other leafy species (19.4 %) (Table 2). According to Hernández-Salas et al. (2013), the implementation of intensive cutting to promote the regeneration of parent trees does not exclusively ensure the regeneration of individuals of the genus selected as the parent tree, since in the intervened areas there are other taxa with different regeneration mechanisms. Likewise, in the shrub stratum, 4 321 shrubs ha-1 were recorded, among which oak (51.43 %) and other shrubs (48.57 %) were the dominant species; while 54 444 individuals ha-1 were recorded for the herbaceous stratum (Table 2). Castelán-Lorenzo and Arteaga-Martínez (2009) documented densities of 4 200 trees ha-1, resulting from a good application and monitoring of forestry treatment to ensure forest regeneration. The parent tree treatment modifies the diversity in the regeneration, while the application of forestry treatments maintains the richness of tree species, but tends to produce a change in the number of individuals (Hernández-Salas et al., 2013).
In the individual selection areas, the abundance of the tree stratum was 597 trees ha-1, of which 64.19 % were oaks, 30.70 % Pinus, and 5.11 % other leaves. The shrub stratum contained 1 605 trees ha-1 with 53.9 % of oaks and 46.2 % of other leaves (Table 2). The results obtained by Ríos-Altamirano et al. (2016) showed a higher abundance in the tree stratum dominated by Pinus, which is of commercial interest. Graciano-Ávila et al. (2020) report results of greater abundance of Pinus in temperate forests of the states of Puebla and Durango. The absolute tree abundance differed significantly (p=0.02) between the group-selection regeneration cutting, the parent tree regeneration cutting, and the individual selection treatments; the dominance was 0.82 m2 ha-1 in those areas where the group-selection regeneration cutting treatment was applied for the Pinus genus; 37.07 m2 ha-1 with the regeneration treatment of parent trees, and 23.20 m2 ha-1 with the individual selection. The reduction in the dominance of the Pinus genus is due to the growth of new tree stands due to the application of the group-selection regeneration cutting treatment; the greatest dominance was obtained in the regeneration treatment of parent trees due to the concentration of trees with larger diameters. The species with the highest frequency records in the group-selection regeneration cutting treatment were Pinus patula Schltdl. & Cham. and Pinus pseudostrobus Lindl. In those areas where regeneration felling of parent trees was carried out, the most frequent taxa were Pinus patula, followed by Pinus oaxacana Mirov, Quercus laurina Bonpl., Q. rugosa Neé, and Clethra lanataM. Martens & Galeotti; while, in the individual selection areas, they were Q. rugosa and P. lawsoni Roezl ex Gordon. Pinus patula was the most frequent species in the areas under forest management, and Pinus leiophylla Schiede ex Schltdl. & Cham. var. leiophylla was the one with the lowest frequency. Hernández-Salas et al. (2013) point out absolute frequencies dominated by the genus Pinus, with 89.1 %, followed by Quercus, with 6.5 %.
The differences in abundance between treatments were significant, with the greatest dominance occurring in the parent-tree regeneration cutting treatment. The species with the highest frequency, among which Pinus patula was predominant, varied according to the areas of distribution, which is important because they are genetically differentiated to adapt to changes in climate; examples of such adaptive traits are the time and rate of growth, and resistance to frost damage or drought stress (Sáenz-Romero et al., 2016). These results are relevant for the conservation of forest resources, which supports the hypothesis that regeneration treatments modify the structure of forests under management.
Importance Value Index (IVI)
In the group-selection regeneration cutting treatment, the IVI of the tree stratum was 100 % for Pinus species, particularly Pinus patula (33.67 %). This is because these are areas where forestry treatment contributes to the establishment of natural regeneration and favors pines and, to a lesser extent, associated species that are not yet prevalent. For the areas with parent-tree regeneration cutting, the Pinus genus obtained an IVI of 52.88 %; Pinus patula was also the predominant species (IVI=20.1 %). In the areas with individual selection treatment, the Pinus genus again stood out with a value of 48.3 %. Hernández-Salas et al. (2013) obtained IVI values of 85.1 % for Pinus, while Silva-González et al. (2022) recorded an IVI of 62.4 % for this same genus. Moreno (2001) points out that the IVI analysis allows monitoring and tracking of changes in species management.
Species diversity
The forestry treatments showed significant differences (p=0.05) in the evaluated diversity indexes. The group-selection regeneration cutting treatment for the tree stratum had the lowest Shannon-Wiener (H') diversity value, of 1.35. Vásquez-Cortez et al. (2018) determined an H' value of 1.14 for an area with clear-cutting because one species is dominant there (Silva-González et al., 2021). The H' index of the herbaceous stratum exhibited a value of 1.96 (Table 3), which represents a low diversity. In those areas where parent-tree regeneration cutting treatments were applied, a value of H' of 2.25 was obtained for the tree stratum, while the highest value was obtained in the herbaceous stratum, with an H' of 2.37, which amounts to a median diversity. While in those areas where individual selection treatments were applied, the herbaceous stratum dominated with an H' of 1.89, while the arboreal stratum exhibited an H' of 1.55, a value slightly higher than that of 1.21 indicated by Solís et al. (2006) for an area under management with a selection treatment. Ramírez et al. (2019) estimated a value of H' of 1.25, which indicates a low diversity. Flores-Morales et al. (2022) estimated a Margalef Index of 1.53 and a Shannon Index of 1.74, corresponding to a low richness and diversity, respectively. According to Hernández-Salas et al. (2013), forestry intervention leads to a decrease in tree diversity. The results of this study agree with their hypothesis because the application of regeneration treatments modifies the diversity by reducing the number of species.
Table 3. Values of the indexes evaluated by stratum with the various forestry treatments applied in the forest management areas.
Stratum |
Shannon-Weiner |
Evenness |
Margalef |
||||||
GS |
PT |
IS |
GS |
PT |
IS |
GS |
PT |
IS |
|
Tree |
1.35 |
2.25 |
1.55 |
0.84 |
0.90 |
0.75 |
0.76 |
2.12 |
1.30 |
Shrub |
1.65 |
1.53 |
1.27 |
0.79 |
0.85 |
0.91 |
1.88 |
1.41 |
1.17 |
Herb |
1.96 |
2.37 |
1.89 |
0.68 |
0.88 |
0.74 |
3.18 |
3.60 |
2.81 |
GS = Group selection; PT = Parent-tree regeneration cutting; IS = Individual selection.
In those areas where group-selection regeneration cutting was applied, the Margalef species richness index reached the highest values in the herbaceous stratum (3.18); in the tree stratum with parent-tree regeneration cutting, the estimate was 2.12, and in the herbaceous stratum, it was 3.60; in those areas with individual selection, the herbaceous stratum stood out with 2.81 (Table 3). Silva-González et al. (2021) determined values of 2.14, which showed a greater richness.
Both the group-selection and parent-tree regeneration cutting treatments showed a qualitative Sørensen Index of 0.40, as they shared 62 % of the species. The parent-tree and individual-selection treatments shared an index of 0.39, with a 48 % similarity. For the group-selection and individual-selection regeneration cutting treatments, a value of 0.14 with a species similarity of 31 % was estimated. This is because the selective silvicultural interventions aimed at reducing species of lower commercial value in favor of the Pinus genus (Solís et al., 2006).
Conclusions
The evaluation of the two management methods applied shows an uneven distribution of tree diameters. In the regeneration treatment, abundance and dominance are most notable in the herbaceous stratum, with a diversity index H' of 2.37, and in the arboreal stratum, with an H’ of 2.25. In the individual selection treatment, herbaceous plants also have a higher abundance and dominance, although with a lower diversity (H' of 1.89), in contrast to the tree stratum, with an H' of 1.55. For the group-selection regeneration cutting treatment, the diversity in the tree stratum is one of the lowest, with an H' of 1.35, while the shrub stratum has the highest diversity, with an H' of 1.65, and the herbaceous stratum has an H' of 1.96 because the larger spaces generated thereby favor diversity. There represents a greater richness in the herbaceous and shrub stratum, while, in the tree stratum of the group-selection regeneration cutting treatment, Pinus patula stands out with an Importance Value Index of 33.67 % and, in the parent-tree regeneration cutting treatment, with an IVI of 20.11 %, followed by Quercus laurina, with an IVI of 11.71 %. In the individual selection treatment, Quercus rugosa excels with an IVI of 30.83 %.
Sørensen's Index shows a greater similarity between species under the group-selection and parent-tree regeneration cutting treatments, but there is a species dissimilarity between the group-selection and the individual-selection regeneration cutting treatments. The greatest richness is recorded in the rainy season. The study results indicate that the safe application of any timber forest management program requires periodic evaluation and monitoring in order to ensure the persistence of the forest resources.
Acknowledgements
The authors wish to express their gratitude to the Comisariado de Bienes Comunales (Commissariat of Communal Property) of the Community of Santa María Jaltianguis, Oaxaca state, for the permission and facilities granted for developing this research.
Conflict of interest
The authors declare that they have no conflict of interest. Eduardo Alanís Rodríguez declares that he has not participated in any of the stages of the editorial process of this article.
Contribution by author
Julio Aurelio Ruiz-Aquino and Javier Jiménez-Pérez: research design, measurement of field mensuration variables, and statistical analysis; Óscar Alberto Aguirre-Calderón: revision of the manuscript; Eduardo Alanís-Rodríguez and Gerardo Rodríguez-Ortiz: data processing.
References
Aguirre-Calderón, O. A. (2015). Manejo forestal en el siglo XXI. Madera y Bosques, 21(Núm. esp.), 17-28. https://www.scielo.org.mx/pdf/mb/v21nspe/v21nspea2.pdf
Castelán-Lorenzo, M. y Arteaga-Martínez, B. (2009). Establecimiento de regeneración de Pinus patula Schl. et Cham., en cortas bajo el método de árboles padres. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 15(1), 49-57. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-40182009000100006
Castellanos-Bolaños, J. F., Treviño-Garza, E. J., Aguirre-Calderón, O. A., Jiménez-Pérez, J., Musalem-Santiago, M. y López-Aguillon, R. (2008). Estructura de bosques de pino pátula bajo manejo en Ixtlán de Juárez, Oaxaca, México. Madera y Bosques, 14(2), 51-63. https://doi.org/10.21829/myb.2008.1421212
Chávez-Pascual, E. Y., Rodríguez-Ortiz, G., Enríquez-del Valle, J. R., Velasco-Velasco, V. A. y Gómez-Cárdenas, M. (2017). Compartimentos de biomasa aérea en rodales de Pinus oaxacana bajo tratamientos silvícolas. Madera y Bosques, 23(3), 147-161. https://doi.org/10.21829/myb.2017.2331627
Corral R., J. J., Aguirre C., O. A., Jiménez P., J. y Corral R., S. (2005). Un análisis del efecto del aprovechamiento forestal sobre la diversidad estructural en el bosque mesófilo de montaña "El Cielo", Tamaulipas, México. Investigación Agraria, Sistemas y Recursos Forestales, 14(2), 217. https://doi.org/10.5424/srf/2005142-00885
Espinoza-Zúñiga, P., Leos-Rodríguez, J. A., Rodríguez-Ortiz, G., Montiel-Batalla, B. M. y Valdivia-Alcalá, R. (2023). Carbono estructural y compartimentos en bosques certificados por el Forest Stewardship Council, en Oaxaca, México. Ecosistemas y Recursos Agropecuarios, 10(1), Artículo e3474. https://doi.org/10.19136/era.a10n1.3474
Flores-Morales, E. A., Aguirre-Calderón, O. A., Treviño-Garza, E. J., González-Tagle, M. A., Alanís-Rodríguez, E., Ángeles-Pérez, G. y Huizar-Amezcua, F. (2022). Diversidad y estructura arbórea de un bosque templado bajo manejo en el municipio de Pueblo Nuevo, Durango, México. Polibotánica, (54), 11-26. https://doi.org/10.18387/polibotanica.54.2
García-Aguilar, J. A., Luna-Cedeño, J. J., Rodríguez-Ortiz, G. y Leyva-López, J. C. (2021). Acumulación de biomasa en estacas de cuatro especies de Bursera en Oaxaca. Ciencia ergo-sum, 28(2), Artículo e126. https://doi.org/10.30878/ces.v28n2a9
García-Mendoza, A. J. y Meave del C., J. A. (2011). Diversidad Florística de Oaxaca: De musgos a angiospermas (colecciones y lista de especies) (2ª edición). Instituto de Biología de la Universidad Nacional Autónoma de México y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad
Graciano-Ávila, G., Alanís-Rodríguez, E., Aguirre-Calderón, O. A., González-Tagle, M. A., Treviño-Garza, E. J. y Mora-Olivo, A. (2017). Caracterización estructural del arbolado en un ejido forestal del noroeste de México. Madera y Bosques, 23(3), 137-146. https://doi.org/10.21829/myb.2017.2331480
Graciano-Ávila, G., Alanís-Rodríguez, E., Aguirre-Calderón, O. A., González-Tagle, M. A., Treviño-Garza, E. J., Mora-Olivo, A. y Corral-Rivas, J. J. (2020). Cambios estructurales de la vegetación arbórea en un bosque templado de Durango, México. Acta Botánica Mexicana, 127, Artículo e1522. https://www.scielo.org.mx/pdf/abm/n127/2448-7589-abm-127-e1522.pdf
Hernández-Salas, J., Aguirre-Calderón, O. A., Alanís-Rodríguez, E., Jiménez-Pérez, J., Treviño-Garza, E. J., González-Tagle, M. A., Luján-Álvarez, C., Olivas-García, J. M. y Domínguez-Pereda, L. A. (2013). Efecto del manejo forestal en la diversidad y composición arbórea de un bosque templado del noroeste de México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 19(2), 189-200. https://doi.org/10.5154/r.rchscfa.2012.08.052
Juárez-Agis, A., Herrera C., N. D., Martínez y P., J. L. y Reyes U., M. (2016). Diversidad y estructura de la selva mediana subperennifolia de Acapulco, Gro., México. Revista Iberoamericana de las Ciencias Biológicas y Agropecuarias, 5(10), 50-69. https://www.ciba.org.mx/index.php/CIBA/article/view/58
Leyva-López, J. C., Velázquez-Martínez, A. y Ángeles-Pérez, G. (2010). Patrones de diversidad de la regeneración natural en rodales mezclados de pino. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 16(2), 227-239. https://doi.org/10.5154/r.rchscfa.2010.06.038
Luna-Bautista, L., Hernández-de la Rosa, P., Velázquez-Martínez, A., Gómez-Guerrero, A. & Acosta-Mireles, M. (2015). Understory in the composition and diversity of managed forest areas in Santa Catarina Ixtepeji, Oaxaca. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 21(1), 109-121. https://doi.org/10.5154/r.rchscfa.2014.08.037
Missouri Botanical Garden. (2022, 9 de enero). Tropicos v3.4.2. http://www.tropicos.org
Moreno, C. E. (2001). Métodos para medir la biodiversidad. Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (Cyted), Oficina Regional de Ciencia y Tecnología para América Latina y el Caribe (Orcyt), y Sociedad Entomológica Aragonesa (SEA). https://www.researchgate.net/publication/304346666_Metodos_para_medir_la_biodiversidad
NOM-059-SEMARNAT-2010. (2010, 26 de noviembre). NORMA Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario Oficial de la Federación, Segunda Sección, de 30 de diciembre de 2010. http://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/agenda/DOFsr/DO2454.pdf
Pérez-López, R. I., González-Espinosa, M., Ramírez-Marcial, N. y Toledo-Aceves, T. (2020). Efectos del “Método de Desarrollo Silvícola” sobre la diversidad arbórea en bosques húmedos de montaña del norte de Chiapas, México. Revista Mexicana de Biodiversidad, 91, Artículo e913326. https://doi.org/10.22201/ib.20078706e.2020.91.3326
Ramírez S., R., Ángeles P., G., Hernández de La R., P., Cetina A., V. M., Plascencia E., O. y Clark-Tapia, R. (2019). Efectos del aprovechamiento forestal en la estructura, diversidad y dinámica de rodales mixtos en la Sierra Juárez de Oaxaca, México. Madera y Bosques, 25(3), Artículo e2531818. https://doi.org/10.21829/myb.2019.2531818
Rendón-Pérez, M. A., Hernández-de la Rosa, P., Velázquez-Martínez, A., Alcántara-Carbajal, J. L. y Reyes-Hernández, V. J. (2021). Composición, diversidad y estructura de un bosque manejado del centro de México. Madera y Bosques, 27(1), Artículo e2712127. https://doi.org/10.21829/myb.2021.2712127
Ríos-Altamirano, A., Alfonso-Corrado, C., Aguirre-Hidalgo, V., Ángeles-Pérez, G., Mendoza-Díaz, M. M., Rodríguez-Rivera, V., Roldán-Félix, E. y Clark-Tapia, R. (2016). Abundancia y distribución del género Pinus en Capulálpam de Méndez, Sierra Juárez, Oaxaca. Madera y Bosques, 22(3), 61-74. https://doi.org/10.21829/myb.2016.2231457
Romo G., D., Valtierra P., E., González G., M. de J., Valdez L., J. R. y Vivar M., R. (2016). Organización social ejidal y manejo del capital natural forestal maderable en Carbonero-Jacales, Huayacocotla, Veracruz. Revista Mexicana de Ciencias Forestales, 7(34), 85-99. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11322016000200085
Rzedowski, J. (2006). Vegetación de México (1a Edición digital). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. https://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/VegetacionMx_Cont.pdf
Sáenz-Romero, C., Lindig-Cisneros, R. A., Joyce, D. G., Beaulieu, J., Bradley St. C., J. & Jaquish, B. C. (2016). Assisted migration of forest populations for adapting trees to climate change. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(3), 303-323. https://doi.org/10.5154/r.rchscfa.2014.10.052
SAS Institute Inc. (2021). SAS/STAT® User’s Guide. SAS Institute Inc. https://documentation.sas.com/api/collections/pgmsascdc/v_016/docsets/statug/content/sashelp.pdf
Servicios Técnicos Forestales de Santa María Jaltianguis. (2017). Programa de manejo forestal para el aprovechamiento y conservación de los recursos forestales maderables de Santa María Jaltianguis (Ciclo de corta 2017-2027). Servicios Técnicos Forestales de Santa María Jaltianguis.
Silva-González, E., Aguirre-Calderón, O. A., Treviño-Garza, E. J., Alanís-Rodríguez, E. y Corral-Rivas, J. J. (2021). Efecto de tratamientos silvícolas en la diversidad y estructura forestal en bosques templados bajo manejo en Durango, México. Madera y Bosques, 27(2), Artículo e2722082. https://doi.org/10.21829/myb.2021.2722082
Silva-González, E., Aguirre-Calderón, O. A., Alanís-Rodríguez, E., González-Tagle, M. A., Treviño-Garza, E. J. y Corral-Rivas, J. J. (2022). Evaluación del aprovechamiento forestal en la diversidad y estructura de un bosque templado en Durango. Revista Mexicana de Ciencias Forestales, 13(71), 103-132. https://doi.org/10.29298/rmcf.v13i71.1017
Solís M., R., Aguirre C., O. A., Treviño G., E. J., Jiménez P., J., Jurado Y., E. y Corral-Rivas, J. (2006). Efecto de dos tratamientos silvícolas en la estructura de ecosistemas forestales en Durango, México. Madera y Bosques,12(2), 49-64. https://doi.org/10.21829/myb.2006.1221242
Vásquez-Cortez, V. F., Clark-Tapia, R., Manzano-Méndez, F., González-Adame, G. y Aguirre-Hidalgo, V. (2018). Estructura, composición y diversidad arbórea y arbustiva en tres condiciones de manejo forestal de Ixtlán de Juárez, Oaxaca. Madera y Bosques, 24(3), Artículo e2431649. https://doi.org/10.21829/myb.2018.2431649
Villaseñor, J. L. (2018). Diversidad y distribución de la familia Asteraceae en México. Botanical Sciences, 96(2), 332-358. https://doi.org/10.17129/botsci.1872
Yan, H., Liang, C., Li, Z., Liu, Z., Miao, B., He, C. & Sheng, L. (2015). Impact of precipitation patterns on biomass and species richness of annuals in a dry steppe. PloS ONE, 10(4), Article e0125300. https://doi.org/10.1371/journal.pone.0125300
Todos los textos publicados por la Revista Mexicana de Ciencias Forestales –sin excepción– se distribuyen amparados bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.