Revista Mexicana de Ciencias Forestales Vol. 16 (88)
Marzo - Abril (2025)
DOI: https://doi.org/10.29298/rmcf.v16i88.1479 Research article Modelo 3PG para estimaCaracterización ecológica y fitoquímica de poblaciones naturales de Galphimia spp. en el estado de Aguascalientes Ecological and phytochemical characterization of Galphimia spp. natural populations in the state of Aguascalientes León Arturo Lozano-García1, José de Jesús Luna-Ruiz1*, Joaquín Sosa-Ramirez1, Arturo Gerardo Valdivia-Flores1, Alexandre Toshirrico Cardoso-Taketa2, María Luisa Villarreal Ortega2, Eleazar León-Alvarez2, Mónica Morales Aguilar2rigo Hakamada1, Jesús Prados Coronado2, Cassiano José Lages Marinho Falcão3, Omar Carrero4, Belkis Sulbarán-Rangel5* |
Fecha de recepción/Reception date: 19 de abril de 2024.
Fecha de aceptación/Acceptance date: 30 de septiembre de 2024._______________________________
1Universidad Autónoma de Aguascalientes, Centro de Ciencias Básicas. México.
2Universidad Autónoma del Estado de Morelos, Centro de Investigación en Biotecnología. México.
*Autor para correspondencia; correo-e: joselunaruiz11@yahoo.com.mx
*Corresponding author; e-mail: joselunaruiz11@yahoo.com.mx
Abstract
The Galphimia genus of the Malpighiaceae family contains 24 species, among the most representative are Galphimia gracilis, Galphimia angustifolia and Galphimia glauca. In México the latter distributes in the Central and Northeastern regions, where it exhibits anti-inflammatory, sedative, and anxiolytic properties. However, the presence and accumulation of bioactive metabolites such as galfimins, a type of triterpene, present in samples collected in the states of Guanajuato and Querétaro, and galphimins and galphimidins from the states of Guerrero and Morelos, have been reported in a few wild communities in Mexico. The objective of the present study was to generate ecological, morphological and phytochemical information associated with natural populations of Galphimia spp. in four sites at the state of Aguascalientes (Aguascalientes, Jesús María, Calvillo and San José de Gracia). Ecological conditions were assessed through an inventory for site recognition; morphological conditions with the methodology proposed by the International Plant Genetic Resources Institute and specialized taxonomic keys; and phytochemistry with plant samples from each population to determine the presence of triterpenes using automated thin layer and high-resolution liquid chromatographic techniques. The sites with the presence of Galphimia spp. in the state showed some degree of disturbance and environmental differences in soil and vegetation. Morphological and phenological characteristics did not detect differences between populations. The phytochemical profile did not show the presence of known galfimins and galphimidins in the populations. This is the first report on phytoecological and phytochemical analyses of natural populations of Galphimia spp. in Aguascalientes. Larger studies are required to identify Galphimia species in the state of Aguascalientes and analyze the biological activity of some bioactive compounds that were detected, which could be of pharmacological and industrial interest.
Key words: Aguascalientes, galphimidins, galphimins, Galphimia Cav., wild populations, triterpenes.
Resumen
El género Galphimia, familia Malpighiaceae, incluye 24 especies, y entre las más representativas están: Galphimia gracilis, Galphimia angustifolia y Galphimia glauca. Esta última se distribuye en las zonas central y noreste de México; se le atribuyen propiedades antiinflamatorias, sedantes y ansiolíticas. Asimismo, se ha identificado la presencia y acumulación de metabolitos bioactivos como los triterpenos, denominados galfiminas, en muestras recolectadas en Guanajuato y Querétaro; galfiminas y galfimidinas en ejemplares de Guerrero y Morelos. Sin embargo, hay pocos registros en comunidades silvestres. El objetivo del presente estudio fue generar información ecológica, morfológica y fitoquímica asociada a cuatro poblaciones naturales de Galphimia spp. del estado de Aguascalientes (Aguascalientes, Jesús María, Calvillo y San José de Gracia). En cada población se evaluaron condiciones ecológicas mediante inventario para reconocimiento del sitio; morfológicas con la metodología propuesta por el International Plant Genetic Resources Institute y claves taxonómicas; y fitoquímicas con muestras vegetales mediante técnicas cromatográficas en capa fina automatizada y de líquidos de alta resolución. Los cuatro sitios con presencia de Galphimia spp. mostraron algún grado de disturbio y diferencias ambientales en suelo y vegetación. En las características morfológicas y fenológicas no hubo diferencias entre poblaciones. El perfil fitoquímico no reveló presencia de galfiminas y galfimidinas citadas en otras poblaciones. Este es el primer análisis fitoecológico y fitoquímico de poblaciones naturales de Galphimia spp. en Aguascalientes. Se requieren estudios más amplios para identificar las especies de Galphimia en el estado y analizar la actividad biológica de algunos compuestos bioactivos detectados que podrían ser de interés farmacológico e industrial.
Palabras clave: Aguascalientes, galfimidinas, galfiminas, Galphimia Cav., poblaciones silvestres, triterpenos.
Introduction
The Galphimia Cav. genus, belongs to the Polygales order, Malpighiaceae family (Stevens, 2024); 24 species of this genus are present in Mexico (Villaseñor, 2016), some of them of scientific and commercial interest due to their phytochemical derivatives, such as Galphimia glauca Cav. (Sharma et al., 2012a) distributed in central states of the country (Gesto-Borroto et al., 2019), mainly those located in the biogeographic provinces of the Southern Highlands, Trans-Mexican Volcanic Axis, Balsas Depression, and Southern Sierra Madre (Espinosa et al., 2008).
In terms of its phytochemical profile, the first nor-dry-triterpene discovered, isolated from G. glauca was galphimin B, in specimens collected in Dr. Mora, Guanajuato, with sedative activity (Tortoriello & Lozoya, 1992). Subsequently, other types of triterpenes were registered: A-C and galphimidin with antiprotozoal properties (del Rayo et al., 2002), galphimins A-F with sedative and anxiolytic activity (Cardoso et al., 2004), and anti-inflammatory activity was observed in methanolic extracts of Galphimia populations from the states of Guanajuato, Querétaro, Jalisco, and Morelos (Cardoso-Taketa et al., 2008). The anti-inflammatory activity of the components was described by González-Cortazar et al. (2014), and recently the anti-inflammatory action of two galphimidins was studied in depth (León-Álvarez et al., 2024).
G. glauca is cited in the without risk category (NOM-059-SEMARNAT-2010, 2010), associated with areas of anthropic disturbance, with poor soils and disturbed vegetation (Siqueiros et al., 2017). Gesto-Borroto et al. (2019) identified four Galphimia species from Guanajuato, Querétaro, Hidalgo, Morelos and San Luis Potosí; to determine the species of Galphimia, the authors used six DNA markers (matK, rbcL, rpoC1, psbA-trnH, ITS1, and ITS2) in combination with the chemical profiles of each population, using thin layer chromatography.
The wild populations of Aguascalientes are botanically catalogued as Galphimia glauca (Siqueiros et al., 2017; Villaseñor, 2016), but information on their distribution and biological activity is scarce and on their phytochemical compounds is null. However, and given the discussion and confusion about the identification of Galphimia taxa collected in Mexico, based on botanical descriptors or DNA markers, in this paper specimens collected for study as Galphimia spp. will be considered. In this regard, DNA barcoding analyses have revealed the misclassification of many species of Galphimia that have been identified as G. glauca. The objective of this research was to generate ecological, morphological, and phytochemical information associated with four natural populations of Galphimia spp. present in the state of Aguascalientes (Aguascalientes, Jesús María, Calvillo, and San José de Gracia).
Materials and Methods
Ecological characterization of Galphimia spp.
The study area was selected based on those spots within the state of Aguascalientes where the presence of Galphimia spp. was registered, including the municipalities of Aguascalientes (AGS), -21°53’01.0206” N and 102°25’22.6204” W; Jesús María (JM), -21°54’24.63” N and 102°31’59.19” W; Calvillo (CAL), -21°53’30.56” N and 102°35’39.37” W, and San José de Gracia (SJG), -22°9’22.46” N and 102°32’27.22” W (Siqueiros, 2024). Using model eTrex 3 Garmin® equipment, unstratified sampling polygons were drawn in variable areas (one per location) recommended for this type of study (McRobertset al.,1992). The data were subsequently processed in Arcmap 10.8.1, using vector layers of biogeographic regions (Espinosa et al., 2008), and vegetation type (Siqueiros et al., 2017).
Personnel from the herbarium of the Universidad Autónoma de Aguascalientes (Autonomous University of Aguascalientes) (HUAA) herborized (Lot & Chiang, 1986), identified and authenticated the specimens collected by site, using specialized taxonomic keys as proposed by Rzedowski (2006), assigning them collection accession numbers. The species occurring in each site were documented using the procedure described by Romahn and Ramírez (2010).
Five samples of 100-200 g of soil were obtained from each site and subsequently blended to form a 1 kg composite sample according to the criteria of the Mexican Official NORM NOM-021-RECNAT-2000 (2001). Climatological data were drawn from the geographical and environmental maps’ digital system of Instituto Nacional de Estadísticas y Geografía (Inegi, 2022). An inventory was made of specimens presumably of G. glauca located by site, and five individuals were selected by simple sampling.
The morphological characteristics (height, diameter, number of flowers per axil, as well as leaf, fruit and seed dimensions and their physical characteristics) were recorded in keeping with the protocol of Romahn and Ramírez (2010). The characterization variables proposed by the International Board for Plant Genetic Resources Institute (IBPGR, 1980) for tropical species were also used. During one year (July 2021-July 2022), the phenological stages of the selected plants were monitored in situ, and the behavior and reproduction cycle of wild specimens were documented. Data for each site were recorded every 22 days; the information thus gleaned was used to determine the number of days necessary for the beginning of the foliation, flowering, and fruiting phases, according to Fournier's methodology (1974). In addition, a database was integrated and complemented with photographic evidence of each site.
Phytochemical characterization of Galphimia spp.
Sample collection
In March 2023, five specimens per site were selected, classified as G. glauca of reproductive age at leaf stage and as being healthy, vigorous, and free of pests and diseases; the criteria of the manual for the establishment of forest germplasm production units were followed (Comisión Nacional Forestal [Conafor], 2016). Freshly mature leaves from the middle part of the plant were collected from the specimens to form one sample per site; the material was placed in labeled paper bags for shipment to the Laboratorio de Análisis de Suelo, Agua y Nutrientes Vegetales of the Universidad Autónoma de Aguascalientes (Soil, Water and Plant Nutrient Analysis Laboratory of the Autonomous University of Aguascalientes) for preparation and subsequent shipment as ethanoic extracts for chromatographic analysis to the Laboratorio de Plantas Medicinales de la Universidad Autónoma del Estado de Morelos (Medicinal Plants Research Laboratory of the Autonomous University of the State of Morelos).
Extract preparation
Ethanolic extracts were prepared from the plant samples of the four populations, according to the methodology described by Cardoso-Taketa et al. (2008) with certain modifications. The samples were dried for seven days in a cool, dry place out of the direct sunlight and pulverized with a mortar. 1 mL of 96 % ethanol was added to each sample of the completely dry and pulverized material (500 mg), shaking the mixture for 30 seconds at 600 rpm in a model 2 Genie® vortex, sonicating it for 10 minutes in a model D150H Ultrasonic Cleaner MRC®, and then centrifuging it in a model 5702 Eppendorf® centrifuge at 3 000 rpm for 5 minutes. The supernatant was recovered, and the residue containing the sediment was reprocessed three times to achieve a final volume of approximately 2.5 mL of extract per sampled site.
Thin-Layer Chromatography (TLC) Analysis
A TLC was performed using silica plates (60 UV254 silica gel, particle size 5 μm, 0.2 mm, on aluminum support, Merck®) and elution was carried out with a mobile phase of chloroform and ethyl acetate (1:2 v/v). The TLC plates were visualized under UV light at 254 nm and 366 nm (Gesto-Borroto et al., 2019). They were then developed with a 0.1 % vanillin solution in H2SO4 and heated in a model SP131325 TSU® electric grill at 110 °C until the presence of metabolites, mainly triterpenes, was observed. In order to compare and analyze the extracts, a standard sample of galphimins triterpenes isolated from a G. glauca population of Dr. Mora, Guanajuato state (GM), was utilized, together with a sample from the population of Tepoztlán, Morelos state (TM), where galphimins do not occur. The standards galphimidin (1) and galphimidin B (2), isolated in previous studies by Cardoso et al. (2004) and León-Álvarez et al. (2024), were obtained from the latter population.
High-Performance Liquid Chromatography (HPLC)
The chromatographic profile of the ethanolic extracts of the collected Galphimia spp. populations was performed with the HPLC technique under the conditions described by Cardoso et al. (2004). The analysis was carried out with a model LC-Net ll/ADC JASCO® equipment (50/60 HZ), equipped with a C18 analytical column (Capcell Pak®; 5 µm, 4.6×250 mm).
The elution system was isocratic, using a mixture of acetonitrile and water (45:55 v/v) with a flow of 0.8 mL min-1. 20 μL of each sample was injected at a concentration of 3 mg mL-1 and the detection of metabolites was done with a model 2 CAMAG TLC Visualizer® UV detector set at 254 nm.
The extracts obtained were analyzed in parallel with an extract of Galphimia glauca from Dr. Mora, Guanajuato (GM), previously characterized and recognized for its production of galphimins (Cardoso et al., 2004; Gesto-Borroto et al., 2019).
Results and Discussion
Ecological characterization of Galphimia spp.
The sites with Galphimia spp. exhibited some differences in the plant communities that form and interact with them, as well as in certain environmental conditions (Table 1). These data are consistent with information from the digital system of geographical and environmental maps of Inegi (2022). In Aguascalientes, Galphimia spp. were found to be distributed in two of the three biogeographical regions cited by Espinosa et al. (2008): Aguascalientes, Calvillo and Jesús María for the Southern Altiplano, and San José de Gracia for the Sierra Madre Occidental, where they are part of the vegetation of a floristic transition zone in the state, as mentioned by Rzedowski (2006). The characterization of the wild specimens of Galphimia spp. sampled in the four geographical areas showed similarities in morphology and phenology between them that rule out any mutation or speciation, in addition to expressing similarities between the attributes of the species and those of the authenticated specimens (eFloraMEX, 2023) (Table 2); however, no biotechnological or genetic verification was carried out, unlike in the study by Sharma et al. (2012b).
Table 1. Environmental descriptors by site.
Descriptor |
Aguascalientes |
Jesús María |
Calvillo |
San José de Gracia |
Guanajuato (revised site) |
1 |
2 062 m |
2 173 m |
2 148 m |
2 514 m |
2 120 m |
2 |
Opuntia spp., Mimosa monancistra Benth., Acacia schaffneri (S. Watson) F. J. Herm., Prosopis laevigata (Humb. & Bonpl. ex Willd.) M. C. Johnst. |
Quercus potosina Trel., Opuntia spp., Mimosa monancistra Benth., Acacia schaffneri (S. Watson) F. J. Herm., Prosopis laevigata (Humb. & Bonpl. ex Willd.) M. C. Johnst., Yucca filifera Chabaud |
Opuntia spp., Mimosa monancistra Benth., Acacia schaffneri (S. Watson) F. J. Herm., Prosopis laevigata (Humb. & Bonpl. ex Willd.) M. C. Johnst., Forestiera phillyreoides (Benth.) Torr., Yucca filifera Chabaud |
Arctostaphylos pungens Kunth, Quercus potosina Trel., Juniperus deppeana Steud. |
Quercus eduardii Trel., Quercus laeta Liebm., Opuntia spp., Ambrosia camphorata (Greene) W. W. Payne, Myrtillocactus geometrizans (Mart. ex Pfeiff.) Console |
3 |
Complex formation of herbaceous, shrubs and succulents |
Complex formation of herbaceous, shrubs and succulents |
Xerophytic scrub |
Chaparral |
Complex formation of herbaceous, shrubs and succulents |
4 |
Xerophytic scrub |
Oak forest |
Temperate/crasicaule scrub |
Oak-pine forest |
Thorn scrub |
5 |
Xerophyll |
Xerophyll |
Temperate |
Temperate |
Xerophyll |
6 |
Shrub |
Shrub |
Shrub |
Arboreal |
Shrub |
7 |
Leptosol |
Leptosol |
Young with little agricultural development, regosol |
Rainfall-dependent agriculture, phaeozem |
Yermosol-regosol |
8 |
Urbanization |
Overgrazing |
Deforestation |
Overgrazing |
Erosion |
9 |
Morcinique river |
Calvillo river |
Calvillo river |
San Pedro river |
Does not count |
10 |
18-21 °C |
18–21 °C |
18–21 °C |
14-18 °C |
17.8 °C |
11 |
400-500 mm |
500-700 mm |
500-700 mm |
500-700 mm |
664 mm |
12 |
75-90 % |
50-75 % |
50-75 % |
50-75 % |
No data |
13 |
Southeast |
Southeast |
Southeast |
Southeast |
No data |
14 |
49-64 % |
16-25 % |
25-36 % |
25-36 % |
8-20 % |
15 |
20 % |
5 % |
10 % |
10 % |
No data |
16 |
20 % |
25 % |
20 % |
20 % |
No data |
17 |
5 % |
10 % |
5 % |
5 % |
No data |
18 |
5 % |
5 % |
5 % |
5 % |
No data |
19 |
45 % |
50 % |
55 % |
55 % |
No data |
20 |
5 % |
5 % |
5 % |
5 % |
1.4 % |
21 |
Circulating water |
Circulating water |
Circulating water |
Circulating water |
No data |
1 = Altitude of the location (m); 2 = Plant community; 3 = Plant formation; 4 = Vegetation type; 5 = Vegetation group; 6 = Physiognomy; 7 = Edaphology; 8 = Degradation; 9 = Hydrology; 10 = Mean temperature (°C); 11 = Average precipitation (mm); 12 = Stratum coating (%); 13 = Exposure; 14 = Slope (%); 15 = Hard rock and blocks (%); 16 = Rocks (%); 17 = Sand (%); 18 = Fine earth (%); 19 = Vegetation (%); 20 = Organic matter (%); 21 = Submersion.
Table 2. Galphimia glauca Cav. on-site descriptors.
Descriptor |
Aguascalientes |
Jesús María |
Calvillo |
San José de Gracia |
Guanajuato (reviewed specimen) |
1 |
Small shrub (<5m) |
Small shrub (<5m) |
Small shrub (<5m) |
Small shrub (<5m) |
Small shrub (<5m) |
2 |
1.20 m |
1.15 m |
1.02 m |
1.27 m |
1.5 m |
3 |
1.37 cm |
1.17 cm |
1.05 cm |
1.35 cm |
No data |
4 |
Monopodic |
Monopodic |
Monopodic |
Monopodic |
Monopodic |
5 |
Numerous primary branches |
Numerous primary branches |
Numerous primary branches |
Numerous primary branches |
Numerous primary branches |
6 |
Semierect |
Semierect |
Semierect |
Semierect |
Erect or scandent |
7 |
Greenish |
Greenish |
Greenish |
Greenish |
No data |
8 |
Ovate |
Ovate |
Ovate |
Ovate |
Ovate |
9 |
Sharp |
Sharp |
Sharp |
Sharp |
Sharp |
10 |
5 cm in average when mature |
5.3 cm in average when mature |
5.1 cm in average when mature |
5.2 cm in average when mature |
5 cm |
11 |
2.3 cm in average when mature |
2.1 cm in average when mature |
2 cm in average when mature |
2 cm in average when mature |
1.5 cm |
12 |
9 mm in average per year |
7 mm in average per year |
5 mm in average per year |
5.1 mm in average per year |
9 mm |
13 |
Dark brown |
Dark brown |
Dark brown |
Dark brown |
No data |
14 |
Green |
Green |
Green |
Green |
No data |
15 |
Axillary |
Axillary |
Axillary |
Axillary |
Axillary |
16 |
23 in average |
27 in average |
25 in average |
23 in average |
No data |
17 |
Included |
Included |
Included |
Included |
Included |
18 |
10 in average per flower |
10 in average per flower |
10 in average per flower |
10 in average per flower |
No data |
19 |
Brown |
Brown |
Brown |
Brown |
Brown |
20 |
Rounded |
Rounded |
Rounded |
Rounded |
Rounded |
21 |
Coriacea |
Coriacea |
Coriacea |
Coriacea |
No data |
22 |
Yes |
Yes |
Yes |
Yes |
Yes |
23 |
3.0 mm in average when mature |
2.9 mm in average when mature |
3.0 mm in average when mature |
3.0 mm in average when mature |
3.2 mm |
24 |
3.0 mm in average when mature |
3.0 mm in average when mature |
3.0 mm in average when mature |
3.0 mm in average when mature |
2.27 mm |
25 |
2 mm in average when mature |
2 mm in average when mature |
2 mm in average when mature |
1.9 mm in average when mature |
2.23 mm |
26 |
2 mm in average when mature |
2 mm in average when mature |
2 mm in average when mature |
1.6 mm in average when mature |
1.8 mm |
27 |
Brown |
Brown |
Brown |
Brown |
No data |
28 |
Rounded |
Rounded |
Rounded |
Rounded |
Globose |
29 |
April-June |
April-June |
April-June |
April-July |
Perennial |
30 |
July-October |
July-October |
July-October |
July-October |
August-September |
31 |
August-October |
August-October |
August-October |
August-October |
August-October |
32 |
September-December |
September-December |
September-December |
September-December |
No data |
1 = Plant habitat; 2 = Average height (m); 3 = Stem diameter (cm); 4 = Vegetative development; 5 = Branching habit; 6 = Insertion of branches; 7 = Young leaf color; 8 = Leaf shape; 9 = Leaf apex shape; 10 = Leaf length; 11 = Leaf width; 12 = Petiole length; 13 = Petiole color; 14 = Young shoot color; 15 = Inflorescence; 16 = Flowers per axil; 17 = Insertion of anthers; 18 = Number of stamens; 19 = Fruit color; 20 = Fruit shape; 21 = Endocarp texture; 22 = Calyx limb; 23 = Fruit length; 24 = Fruit width; 25 = Seed length; 26 = Seed width; 27 = Seed color; 28 = Seed shape; 29 = Foliation; 30 = Flowering; 31 = Fruiting; 32 = Maturation.
The four sites with Galphimia spp. were observed to show anthropic alterations, such as overgrazing, fires and land use change, which confirm the establishment of the species in sites with disturbed vegetation and degraded environments (Siqueiros et al., 2017). The general data concerning the characterization of the collection, the environmental descriptors and the specimens located by site are shown in Tables 1 and 2, respectively.
Phytochemical characterization of Galphimia spp. by TLC
The chemical profile of ethanolic extracts obtained from individuals collected in the four localities of Aguascalientes revealed the presence of violet bands in a Thin-Layer Chromatography (TLC) when treated with vanillin/H2SO4/110 °C. This coloration is characteristic of bioactive nor-triterpenes of the galphimins family, recorded in populations producing this compound (Gesto-Borroto et al., 2019; Sharma et al., 2012). In contrast, those from non-galphimins-producing populations show a blue coloration (León-Álvarez et al., 2024).
The presence of these unidentified compounds with lower polarity compared to the galphimins and galphimidins of the Guanajuato and Morelos extracts, respectively, suggests that the populations have unique triterpene profiles. In particular, a major compound was detected in the four sampling sites, with a Retention factor (Rf) of 0.8 and a violet coloration, which raises interesting perspectives on the structure and potential biological activity, given that it has not been previously documented in Mexican Galphimia spp.
The TLC triterpene profile of the samples from Aguascalientes is more simplified compared to that of individuals collected in Guanajuato, Querétaro and Morelos. It is noteworthy that the compound with Rf 0.8 is exclusive of the four populations of Galphimia from Aguascalientes and differs from those obtained in the population of Guanajuato, which exhibit an Rf of 0.5. In addition, the Aguascalientes extracts do not contain the galphimidins identified in the Morelos population, since galphimidin and galphimidin B exhibit an Rf of 0.6 and 0.2, respectively (Figure 1).
A = Observed under UV light at 366 nm; B = Developed with vanillin/H2SO4/110 °C; Rf = Retention factor; AG = Aguascalientes; JM = Jesús María; CA = Calvillo; SJ = San José de Gracia; GM = Dr. Mora, Guanajuato (positive control for galphimins and negative control for galphimidins); TM = Tepoztlán, Morelos (positive control for galphimidin [1] and galphimidin B [2] and negative for galphimins).
Figure 1. Automated thin layer chromatographic profiling (CAMAG) of extracts of wild specimens from populations of the states of Aguascalientes, Guanajuato and Morelos in normal phase silica and mobile phase CHCl3:AcOEt (1:2).
In order to characterize the compound with Rf 0.8, it will be necessary to purify it by chromatographic methods and to analyze it with 1H and 13C nuclear magnetic resonance, as well as to determine its molecular weight by mass spectrometry.
The TLC analysis of the Aguascalientes extracts also failed to show bands corresponding to the blue-revealing compounds, such as galphimidin and galphimidin B. These compounds are present in the population of Tepoztlán, Morelos (TM) and correspond to nor-triterpenes, originally isolated from the populations of Ayutla, Guerrero (del Rayo et al., 2002) and Cuernavaca, Morelos (Rios et al., 2020), respectively. Both compounds have anti-inflammatory activity in RAW 264.7 macrophage cells, and inhibit nitric oxide production (León-Álvarez et al., 2024).
The TLC profiles —particularly the absence of galphimins cited in the Guanajuato population and of galphimidins identified in Morelos— clearly differentiate the populations of Aguascalientes from those of Dr. Mora, Guanajuato (GM) and Tepoztlán, Morelos (TM), as shown in Figure 1. Previous studies of various populations of Galphimia spp. suggest that differences in metabolite production may be related to genetic and environmental factors (Gesto-Borroto et al., 2019).
A metabolomic analysis performed by Sharma et al. (2012b) on Galphimia spp. populations collected in Mexico showed that the population from Zapopan, Jalisco, has a distinct chemical profile compared to other populations. Considering that the populations collected in Jalisco are closer to those of Aguascalientes, it would be interesting to explore the degree of chemical similarity between the populations of both regions.
On the other hand, phylogenetic analysis based on DNA barcoding methodology revealed that the populations of Galphimia spp. from Morelos, Guerrero and Jalisco are grouped in the same cluster, while those from Guanajuato and Querétaro form another cluster corresponding to Galphimia glauca. Given the geographic proximity between the populations of Jalisco and Aguascalientes, it would be relevant to investigate whether they share phylogenetic similarities, since neither of them produces galphimins (Sharma et al., 2012a).
High Performance Liquid Chromatography (HPLC) Analysis
The HPLC chromatographic profiles of the ethanolic extracts of the Aguascalientes populations showed several peaks with retention times (Rt) of 23.0 to 26.0 min. In contrast, the reference extract from the population of Dr. Mora, Guanajuato, exhibited Rt peaks of 32.5, 46.5, 50.0, 54.0 and 58.0 min, corresponding to the I-V peaks described by Cardoso et al. (2004) (Figure 2). Peak II, the most abundant was identified as the diastereomeric mixture of galphimins B and F.
SJG = San José de Gracia; CA = Calvillo; JM = Jesús María; AGS =Aguascalientes; Dr. Mora (Guanajuato).
Figure 2. HPLC of ethanolic extracts of four plant populations of Galphimia spp. collected in Aguascalientes and a galphimins-producing population (Peaks I-V) of Dr. Mora, Guanajuato.
It is important to note that the chromatograms of the four samples from the Aguascalientes sites showed majority and minority peaks. The retention times of the majority peaks were in the range of 23.1 and 25.5 min, while those of the minority peaks were between 36.9 and 41.0 min, so they may correspond to different triterpenes. The presence of these peaks suggests the existence of compounds with different polarities: according to their retention times, the major ones correspond to more polar compounds, while the minor ones have a lower polarity.
The differences observed in the chemical profiles between the samples from Aguascalientes and the galphimins-producing samples from Dr. Mora, Guanajuato, are possibly related to genetic variations and environmental conditions specific to each population, such as soil characteristics, temperature, moisture, and solar radiation (Balderas et al., 2020; Cardoso-Taketa et al., 2008; Sharma et al., 2012a).
In conclusion, the results obtained by HPLC, complemented by Thin-Layer Chromatography (TLC) analysis, indicate that ethanolic extracts of Galphimia spp. populations of Aguascalientes do not contain galphimins.
Conclusions
The results of this research suggest that the natural populations of Galphimia spp. in Aguascalientes are found in degraded environments and, due to their homogeneous phenological and morphological characteristics, can be attributed to the same species.
The HPLC study confirms the absence of galphimins and the analyses by TLC confirm the lack of galphimidins in the populations of Galphimia spp. in Aguascalientes. The four populations from Aguascalientes analyzed by TLC show low-polarity violet metabolites similar to galphimins. These compounds could serve as phytochemical markers for the populations of Aguascalientes.
There is a clear need for further biological, chemical and pharmacological research on wild populations of Galphimia spp. in Aguascalientes. These studies will allow a better understanding of their biological properties, as well as their potential pharmacological, sedative and anti-inflammatory effects, characteristics that have been documented for triterpenes in populations of Galphimia spp. collected in other regions of Mexico.
The present study represents a significant advance since it is the first ecological and phytochemical analysis of Galphimia spp. in Aguascalientes. The results obtained provide phytochemical profiles that confirm the absence of the bioactive compounds described above. However, the detection of other triterpenes suggests the possibility of a unique chemotype in this region, opening new opportunities for future research with advanced techniques such as HPLC-MS and metabolomic analysis. It is also important to further study the phenolic compounds present, given their potential for biological activities of pharmacological and ecological interest.
The results of the present study do not allow to determine whether the material collected in Aguascalientes corresponds to G. glauca, which should be clarified in future research by means of genetic barcode analysis.
Acknowledgments
The study is part of the first author's Ph. D. project in Biological Sciences: “Location, propagation, and response to agronomic management of Galphimia glauca Cav. (Malpighiaceae) collected in Aguascalientes, Mexico”. The authors are grateful for the support and funding from the Universidad Autónoma de Aguascalientes, the Universidad Autónoma de Morelos and the doctoral scholarship (Registration: 446401) granted by the Consejo Nacional de Humanidades, Ciencias y Tecnologías, Conhacyt, currently Secretaría de Humanidades, Ciencia y Tecnología.
Conflict of interest
The authors declare that they have no conflict of interest.
Contribution by author
León Arturo Lozano-García: research execution, analysis and interpretation of results and drafting of the manuscript; José de Jesús Luna-Ruiz: research supervision, and analysis and interpretation of results; Joaquín Sosa-Ramírez, Arturo Gerardo Valdivia-Flores, Alexandre Thoshirrico Cardoso-Taketa and María Luisa Villarreal Ortega: project planning and monitoring; Eleazar León-Alvarez and Mónica Morales Aguilar: laboratory analysis and data review.
References
Balderas, G. S., Alcalá, R. E., Ortíz-Caltempa, A., Cardoso-Taketa, A., & Villarreal, M. L. (2020). Variation in the production of sedative and anxiolytic compounds among Galphimia sp. populations grown in a greenhouse. Revista Brasileira de Farmacognosia, 30(1), 99-102. https://produccion.siia.unam.mx/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=627207
Cardoso T., A. T., Lozada-Lechuga, J., Fragoso-Serrano, M., Villarreal, M. L., & Pereda-Miranda, R. (2004). Isolation of Nor-secofriedelanes from the sedative extracts of Galphimia glauca. Journal of Natural Products, 67(4), 644-649. https://doi.org/10.1021/np0304666
Cardoso-Taketa, A. T., Pereda-Miranda, R., Choi, Y. H., Verpoorte, R., & Villarreal, M. L. (2008). Metabolic profiling of the Mexican anxiolytic and sedative plant Galphimia glauca using nuclear magnetic resonance spectroscopy and multivariate data analysis. Planta Medica, 74(10), 1295-1301. https://pubmed.ncbi.nlm.nih.gov/18612944/
Comisión Nacional Forestal. (2016). Manual para el establecimiento de unidades productoras de germoplasma forestal. Comisión Nacional Forestal. https://www.gob.mx/cms/uploads/docs/Manual_para_el_establecimiento_de_unidades_productoras_de_Germoplasma_Forestal.pdf
del Rayo C., M., Phillipson, J. D., Croft, S. L., Marley, D., Kirby, G. C., & Warhurst, D. C. (2002). Assessment of the antiprotozoal activity of Galphimia glauca and the isolation of new nor-secofriedelanes and nor-friedelanes. Journal of Natural Products, 65(10), 1457-1461. https://pubmed.ncbi.nlm.nih.gov/12398543/
eFloraMEX. (2023, 1 de enero). Galphimia glauca Cav. eFloraMEX La flora electronica de México. https://efloramex.ib.unam.mx/cdm_dataportal/taxon/2dc66516-701a-4916-8657-0144b6048a4d
Espinosa O., D., Ocegueda C., S., Aguilar Z., C., Flores V., Ó., y Llorente-Bousquets, J. (2008). El conocimiento biogeográfico de las especies y su regionalización natural. En J. Soberón, G. Halffter y J. Llorente-Bousquets (Comps.). Capital natural de México Conocimiento actual de la biodiversidad (Vol. I, pp. 33-65). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. https://www.researchgate.net/publication/301839050_El_conocimiento_biogeografico_de_las_especies_y_su_regionalizacion_natural
Fournier, L. A. (1974). Un método cuantitativo para la medición de características fenológicas en árboles. Turrialba, 24, 422-423. https://www.scirp.org/reference/referencespapers?referenceid=1202016
Gesto-Borroto, R., Cardoso-Taketa, A., Yactayo-Chang, J. P., Medina-Jiménez, K., Hornung-Leoni, C., Lorence, A., & Villarreal, M. L. (2019). DNA barcoding and TLC as tools to properly identify natural populations of the Mexican medicinal species Galphimia glauca Cav. PLoS One, 14(5), Article e0217313. https://doi.org/10.1371/journal.pone.0217313
González-Cortazar, M., Herrera-Ruiz, M., Zamilpa, A., Jiménez-Ferrer, E., Marquina, S., Alvarez, L., & Tortoriello, J. (2014). Anti-inflammatory activity and chemical profile of Galphimia glauca. Planta Medica, 80(1), 90-96. https://pubmed.ncbi.nlm.nih.gov/24338551/
Instituto Nacional de Estadísticas y Geografía (Inegi). (2022). Mapas. Biblioteca digital de Mapas. Conjunto de datos vectoriales. https://www.inegi.org.mx/app/mapas/
International Board for Plant Genetic Resources Institute. (1980). Tropical fruit descriptors. International Board for Plant Genetic Resources. https://cgspace.cgiar.org/server/api/core/bitstreams/89e7bce2-b5d2-4126-8a51-aa683ce179cb/content
León-Álvarez, E., Millán P., C., Gesto-Borroto, R., Acosta-Urdapilleta, M. de L., Téllez-Téllez, M., Barreto G., R., Núñez-Aragón, P. N., Villareal, M. L., & Cardoso T., A. T. (2024). Anti-inflammatory, radical-scavenging, and chelating activities of Nor-Triterpenes from Galphimia species. Revista Brasileira de Farmacognosia, 34(3), 553-563. https://doi.org/10.1007/s43450-023-00506-3
Lot, A., y Chiang, F. (1986). Manual de herbario. Administración y manejo de colecciones, técnicas de recolección y preparación de ejemplares botánicos. Consejo Nacional de la Flora de México, A. C. https://issuu.com/jpintoz/docs/1986_lot-chiang_manualherbario_cnfm
McRoberts, R. E., Tomppo, E. O., y Czaplewski, R. L. (1992). Diseños de muestreo de las Evaluaciones Forestales Nacionales. En Organización de las Naciones Unidas para la Alimentación y la Agricultura (ONUAA). Antología de conocimiento para la evaluación de los recursos forestales nacionales (pp. 1-21). ONUAA. https://www.fao.org/fileadmin/user_upload/national_forest_assessment/images/PDFs/Spanish/KR2_ES__4_.pdf
NOM-021-RECNAT-2000. (2001, 14 de agosto). Norma Oficial Mexicana NOM-021-RECNAT-2000, Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, Muestreo y Análisis. Diario Oficial de la Federación, Segunda Sección, de 31 de diciembre de 2002. https://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdf
NOM-059-SEMARNAT-2010. (2010, 26 de noviembre). Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario Oficial de la Federación, Segunda Sección, de 30 de diciembre de 2010. https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/agenda/DOFsr/DO2454.pdf
Rios, M. Y., Ortega, A., Domínguez, B., Déciga, M., & de la Rosa, V. (2020). Glaucacetalin E and galphimidin B from Galphimia glauca and their anxiolytic activity. Journal of Etnopharmacology, 259, 112939. https://doi.org/10.1016/j.jep.2020.112939
Romahn de la V., C. F., y Ramírez M., H. (2010). Dendrometría. División de Ciencias Forestales de la Universidad Autónoma de Chapingo. https://dicifo.chapingo.mx/pdf/publicaciones/dendrometria.pdf
Rzedowski, J. (2006). Vegetación de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. https://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/VegetacionMxPort.pdf
Sharma, A., Folch, J. L., Cardoso-Taketa, A., Lorence, A., & Villarreal, M. L. (2012a). DNA barcoding of the Mexican sedative and anxiolytic plant Galphimia glauca. Journal of Ethnopharmacology, 144(2), 371-378. https://doi.org/10.1016/j.jep.2012.09.022
Sharma, A., Cardoso-Taketa, A., Choi, Y. H., Verpoorte, R., & Villarreal, M. L. (2012b). A comparison on the metabolic profiling of the Mexican anxiolytic and sedative plant Galphimia glauca four years later. Journal of Ethnopharmacology, 141(3), 964-974. https://doi.org/10.1016/j.jep.2012.03.033
Siqueiros D., M. E., Rodríguez Á., J. A., Martínez R., J., Sierra M., J. C., y García R., G. (2017). Vegetación del Estado de Aguascalientes (1ra Edición). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad y Universidad Autónoma de Aguascalientes. https://editorial.uaa.mx/docs/ve_vegetacion_aguascalientes.pdf
Siqueiros D., M. E. (2024, 11 de mayo). Inventario florístico de familias selectas de dicotiledóneas del estado de Aguascalientes. Version 1.11. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. https://www.gbif.org/es/dataset/d056f586-b5a0-494c-990b-854ddfe18f77
Stevens, P. F. (2024, April 10). Angiosperm PhylogenyWebsite. Version 14. Missouri Botanical Garden. http://www.mobot.org/MOBOT/research/APweb/
Tortoriello, J., & Lozoya, X. (1992). Effect of Galphimia glauca methanolic extract on neuropharmacological tests. Planta Medica, 58(3), 234-236. https://doi.org/10.1055/s-2006-961442
Villaseñor, J. L. (2016). Checklist of the native vascular plants of Mexico. Revista Mexicana de Biodiversidad, 87, 559-902. https://www.redalyc.org/pdf/425/42547314001.pdf
Todos los textos publicados por la Revista Mexicana de Ciencias Forestales –sin excepción– se distribuyen amparados bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.