Revista Mexicana de Ciencias Forestales Vol. 15 (83)

Mayo - Junio (2024)

Logotipo, nombre de la empresa

Descripción generada automáticamente

DOI: https://doi.org/10.29298/rmcf.v15i83.1420

Research article

Árboles asociados a los cafetales en comunidades de la Montaña de Guerrero

Associated trees to coffee plantations in communities of the Montaña de Guerrero region

Marisa Silva Aparicio1*, Carmelo Francisco Olguín1, Severino Jesús Cruz1

 

Fecha de recepción/Reception date: 22 de agosto de 2023.

Fecha de aceptación/Acceptance date: 23 de enero de 2024.

_______________________________

1Programa de Ciencias y Medio Ambiente. Universidad Intercultural del Estado de Guerrero. México.

 

*Autor para correspondencia; correo-e: marucha21048@gmail.com

*Corresponding author; e-mail: marucha21048@gmail.com

 

Abstract

The coffee (Coffea arabica) plantations of the Montaña de Guerrero region preserve the characteristics of a forest and also contribute to the generation of economic resources that help a large number of families to meet some of their basic needs. The objective of this work was to identify the structure and uses of shade species in coffee plantations in two Me'phaa communities in the Montaña de Guerrero region. Twelve plots in Tres Cruces (TC), Acatepec and La Ciénega (LC), Malinaltepec, were sampled using the point-center-square method; trees were measured for distance, height, crown cover and normal diameter. The alpha diversity was estimated based on species richness (S), Simpson's Index, Shannon-Wiener’s Index, and the effective number of species (N0, N1 and N2); similarity was calculated with the Jaccard index (JI), and the Importance Value Index (IVI) was determined. In order to identify the uses of the trees, structured interviews (50 in TC and 10 in LC) were carried out with coffee growers. Thirty-five species were recorded 16 in Tres Cruces and 22 in La Ciénega, of which 83.3 % were native; therefore, the region is classified as under traditional management. Alnus acuminata in LC and Myrsine juergensenii in TC had the highest IVI. Coffee growers reported 24 species in TC and 14 in LC that provide shade, generate organic matter, fruits, flowers, and fuel. The most commonly used species are Clethra mexicana and A. acuminata.

Key words: Agroecosystems, Alnus acuminata Kunth, composition, diversity, native species, Myrsine juergensenii (Mez) Ricketson & Pipoly.

Resumen

Los cafetales (Coffea arabica) de la región de la Montaña de Guerrero mantienen las características de un bosque, además contribuyen a la generación de recursos económicos que ayudan a un gran número de familias a mitigar parte de sus necesidades básicas. El objetivo de este trabajo fue identificar la estructura y los usos de las especies de sombra de los cafetales en dos comunidades Me’phaa de la Montaña de Guerrero. Se muestrearon 12 parcelas en Tres Cruces (TC), Acatepec y La Ciénega (LC), Malinaltepec; se utilizó el método de punto-centro-cuadrado; a los árboles se les midió la distancia, altura, cobertura de copa y diámetro normal. Se estimó la diversidad alfa basada en la riqueza de especies (S), el Índice de Simpson, Shannon-Wiener y el número efectivo de especies (N0, N1 y N2), la similitud se calculó con el Coeficiente Jaccard (IJ) y se determinó el Índice de Valor de Importancia (IVI). Para reconocer los usos de los árboles se aplicaron entrevistas (50 en TC y 10 en LC) estructuradas a los cafeticultores. Se registraron 35 especies, 16 en Tres Cruces y 22 en La Ciénega, de las cuales 83.3 % fueron nativas, por lo que se clasifica como manejo tradicional. Alnus acuminata en LC y Myrsine juergensenii en TC fueron las de mayor IVI. Los cafeticultores señalaron a 24 especies en TC y 14 en LC que proporcionan sombra, generan materia orgánica, frutos, flores y combustibles; las especies más empleadas son Clethra mexicana y A. acuminata.

Palabras clave: Agroecosistemas, Alnus acuminata Kunth, composición, diversidad, especies nativas, Myrsine juergensenii (Mez) Ricketson & Pipoly.

 

 

Introduction

 

 

Coffee growing systems in Mexico are mostly developed under the shade of the original vegetation canopy, which allows the native diversity of each region to be maintained (Moguel and Toledo, 1996, 1999; Anta, 2006; Manson et al., 2008). Trees in these agroecosystems also provide services that help regulate water availability and mitigate the negative effects of long dry periods (from November to May and from June to August during the dry summer months), which affect crop production. In addition, they contribute to keep soil fertility, recycling nutrients, providing a large amount of organic matter, and reducing erosion (Espinoza-Guzmán et al., 2020; Farfán, 2020).

The diversity of trees recorded in the different coffee growing regions of Mexico, according to Moguel and Toledo (1996), includes between 13 and 60 species per hectare. However, this richness is determined by the management of each coffee plantation; i. e., it reflects the producer's decisions in the face of environmental, social and economic opportunities and constraints; therefore, these production systems vary in their structure, botanical composition and agronomic practices (Escalante and Somarriba, 2001). In some cases, the original canopy is replaced by fruit and timber trees, which is known as a coffee garden (Moguel and Toledo, 1999), or the recommendation to establish monospecific shade with species of the Inga Mill. genus is followed (Reyes-Reyes and López-Upton, 2003; Reyes et al., 2022). Thus, coffee plantations keep a tree structure similar to that of a forest or areas with introduced taxa (Ibarra-Isassi et al., 2021).

In the Montaña de Guerrero region, the municipalities that are dedicated to this activity are Metlatonoc, Ilitenco, Tlacoapa, Malinaltepec and Acatepec (SIAP, 2022); the crop is grown under shade, and the population obtains economic income from their commercialization, in addition to other benefits that come from the utilized trees; however, their management includes the replacement of species; therefore, the canopy presents variations. The objective of this study was to identify the alpha and beta diversity, as well as the structure and uses of tree taxa in coffee plantations in two Me'phaa communities (Tres Cruces [TC], Acatepec, and La Ciénega [LC], Malinaltepec) located in the Montaña de Guerrero region; they are expected to be different due to the difference in environmental conditions between TC and LC.

 

 

Materials and Methods

 

 

Study area

 

 

The study area included coffee plantations in the communities of La Ciénega (LC), belonging to the Malinaltepec municipality, and in Tres Cruces (TC), located in the Acatepec municipality (Figure 1). The climate in LC is temperate sub humid A(C)m, while in TC it is semi-warm sub humid (A)C(w1) (INEGI, 2008).

 

Guerrero = State of Guerrero; Acatepec = Acatepec municipality; Malinaltepec = Malinaltepec municipality; Tres Cruces = Tres Cruces community; La Ciénega = La Ciénega community; Kilómetros = Kilometers.

Figure 1 . Geographical location of plots in the study communities.

 

Sampling. Six coffee plots at different altitudes and with different exposures were selected in each of the communities (Figure 1; Table 1). The sampling method that was utilized was the point-center-square (Mostacedo and Fredericksen, 2000) and it was adjusted to the size (average 0.5 ha) and irregular shape of the plots (Silva-Aparicio et al., 2021); this type of sampling consists of marking five points along each plot, 50 m apart from each other. At each point, the four nearest trees were located, and the distance to the center point, crown cover (both measured with a TFC-30ME Truper® tape), height (with a PM-5 Suunto® clinometer), and normal diameter at 1.30 m (with a 308WP/10M Qualitäs-bandmanẞ® diameter tape) were recorded.

 

Table 1. Physical-environmental characteristics of the sampled plots (P).

Community

P

Altitude (m)

Coordinates in UTM

Exposure

Slope (%)

Tres Cruces

1

1 398

507784-1881106

North

65

1

1 474

508381-1880669

Southeast

16

3

1 540

508605-1880118

Northeast

51

4

1 451

507913-1880155

East

44

5

1 553

508161-1879976

Southeast

43

6

1 563

508319-1879971

Northeast

11

La Ciénega

1

1 968

537187-1905857

West

13

1

1 654

537187-1905857

North

10

3

1 713

537490-1905901

Northwest

33

4

1 044

538701-1907098

Northwest

31

5

1 064

538696-1907118

North

40

6

1 973

538677-1905164

East

16

 

Botanical specimens of all the registered shade trees were collected following the method of Lot and Chiang (1986) and taxonomically determined with dichotomous keys and specialized guides (Valencia et al., 2002). The nomenclature revision was performed in The World Flora Online database (WFO, World Flora Online, 2023), and the specimens were deposited in the collection of the Plant Laboratory of the Intercultural University of the State of Guerrero.

Tree species management. Data on shade tree use were collected through the application of questionnaires to cooperating producers in TC (50) and LC (20); questions included information on the composition, uses, and management of the shade species.

Tree structure analysis. The alpha diversity was estimated with the Shannon-Wiener Index (H'), Simpson's dominance (λ), and the effective number of species (N0=Total number of species [S], N1=Number of abundant species [eH'] and N2=Number of very abundant species [1/λ]) (Moreno et al., 2011), beta diversity with the Jaccard similarity coefficient (JI) (Moreno, 2001), and a dendrogram was made with the data from the plots of each community, using the aforementioned Coefficient in the Past software, v. 4.03 (Hammer et al., 2001).

 

     (1)

 

2     (2)

 

     (3)

 

Where:

H’ = Shannon-Wiener Diversity Index

Pi = Number of individuals of each species divided by the total number of individuals of all species recorded

nl = Natural logarithm

λ = Simpson's Dominance Index

JI = Jaccard Index

a = Total number of species present at site A

b = Number of species present at site B

c = Number of species present at sites A and B

 

The attributes of the tree community were calculated using the following indexes (Mostacedo and Fredericksen, 2000):

 

     (4)

 

For density, the formula suggested for the point-center-square method was used:

 

     (5)

 

Where:

Dh = Density per hectare

D = Average distance

 

Basimetric area as follows:

 

     (6)

 

Relative abundance:

 

     (7)

 

Relative frequency:

 

     (8)

 

Importance Value Index (IVI):

 

     (9)

 

Data analysis. The species accumulation curve was developed to determine the representativeness of sampling, for which the non-parametric estimator ICE (López-Gómez and Williams-Linera, 2006) was used. Likewise, for the purpose of determining the existence of significant differences between diversity (H') and dominance (λ) among the plots of the study communities, Hutcheson's method was applied to calculate the modified t value (Magurran, 2004) in the Past v. 4.03 software (Hammer et al., 2001). In addition, mean comparison tests (Student's t-test) (Molina, 2022) for density, height, normal diameter, and canopy cover were performed with the R 4.3.1 software (Contento, 2019).

In addition, the species’ Use Value Index (SUVI), which expresses the importance or cultural value of a given species for all the informers interviewed, was calculated with the following formula (Zambrano-Intriago et al., 2015):

 

     (10)

 

Where:

SUVI = Value of use of the species by each informant

Ns = Number of informers for each species

 

 

 

 

Results

 

 

Tree species richness associated with coffee cultivation. According to the ICE estimator, the sampling effort registered 73 % of shade tree species for TC and 70 % for LC (Figure 2).

 

Observed = S_LC and S_TC; Estimated = ICE_LC and ICE_TC.

Figure 2. Species accumulation curve.

 

Thirty-five species were recorded, 22 in La Ciénega (LC) and 16 in Tres Cruces (TC), belonging to 13 families, of which the richest was Fagaceae with five species, followed by Fabaceae with four, and Solanaceae with three; the rest of the families recorded less than two species (Figure 3) (Table 2). Likewise, 83.3 % of the trees within the coffee plantations were native, among which are those belonging to the genera Quercus L., Clethra L., Myrsine L., and Alnus Mill.; the introduced species were Eriobotrya japonica (Thunb.) Lindl., Citrus aurantium L., C. limon (L.) Osbeck, C. medica L., Hesperocyparis benthamii (Endl.) Bertel, Mangifera indica L. y Psidium guajava L.

 

Figure 3. Number of species per family recorded in the coffee plantations of the studied communities.

 

Table 2. Tree species recorded in the coffee plantations of the study communities.

Family

Species

La Ciénega

Tres Cruces

1

2

3

4

5

6

1

2

3

4

5

6

Fabaceae

Acaciella lemmonii (Rose) Britton & Rose

0

0

0

1

0

0

0

0

0

0

0

0

Betulaceae

Alnus acuminata Kunth

1

1

1

1

1

1

0

0

0

0

0

0

Annonaceae

Annona cherimola Mill.

0

0

1

1

0

0

0

0

0

0

0

0

Papaveraceae

Bocconia arborea S. Watson

0

0

0

0

1

0

0

0

0

0

0

0

Juglandaceae

Carya myristiciformis (F. Michx.) Nutt ex Elliott

0

0

1

0

0

1

0

0

0

0

0

0

Rutaceae

Citrus medica L.

0

1

1

0

0

0

0

0

0

0

0

0

Rutaceae

Citrus aurantium L.

0

0

1

0

0

0

0

0

0

0

0

0

Clethraceae

Clethra lanata M. Maertens & Galeotti

0

0

0

0

0

0

1

1

1

1

1

1

Clethraceae

Clethra rosei Britton

1

0

0

0

0

1

0

0

0

0

0

0

Pentaphylacaceae

Cleyera pachyphylla Chun ex Hung T. Chang

0

0

0

0

0

0

0

1

0

0

0

1

Cupressaceae

Hesperocyparis lusitanica (Mill.) Bartel

0

1

0

0

0

0

0

0

0

0

0

0

Rosaceae

Eriobotrya japonica (Thunb.) Lindl.

0

0

0

0

0

0

0

0

1

0

0

0

Fabaceae

Erythrina americana Mill.

0

1

0

0

0

0

0

0

0

0

0

0

Malvaceae

Heliocarpus appendiculatus Turcz.

0

0

0

0

1

0

0

0

0

0

0

0

Fabaceae

Inga edulis Mart.

1

1

0

0

0

0

1

0

0

1

0

0

Verbenaceae

Lippia umbellata Cav.

0

0

0

1

0

0

0

0

0

0

0

0

Magnoliaceae

Magnolia krusei J. Jiménez Ram. & Cruz Durán

0

0

0

0

0

0

1

0

0

0

0

1

Anacardiaceae

Mangifera indica L.

0

1

0

0

0

0

0

0

0

0

0

0

Melastomataceae

Miconia mirabilis (Aubl.) L. O. Williams

0

0

0

0

0

0

0

0

1

0

0

0

Fabaceae

Mimosa lacerata Rose

1

0

0

1

0

0

0

0

0

0

0

0

Primulaceae

Myrsine juergensenii (Mez) Ricketson & Pipoly

0

0

0

0

0

0

1

1

1

1

1

1

Lauraceae

Persea americana Mill.

0

1

0

0

0

1

0

0

0

0

0

0

Pinaceae

Pinus pseudostrobus Lindl.

0

0

0

0

0

0

1

0

0

1

0

0

Rosaceae

Prunus virginiana L.

0

0

1

0

0

1

0

0

0

0

0

0

Myrtaceae

Psidium guajava L.

0

1

0

0

0

0

0

1

0

0

0

0

Fagaceae

Quercus candicans Née

0

0

0

0

0

0

1

0

1

0

0

0

Fagaceae

Quercus glaucoides M. Martens & Galeotti

0

0

0

0

0

0

0

0

0

0

0

1

Fagaceae

Quercus liebmannii Oerst. ex Trel.

0

0

0

0

0

0

0

1

1

0

0

0

Fagaceae

Quercus peduncularis Née

0

0

0

0

1

0

0

0

0

0

0

0

Fagaceae

Quercus scytophylla Liebm.

0

0

0

0

0

0

0

0

1

1

1

1

Solanaceae

Solanum aligerum Schltdl.

1

0

0

0

0

0

0

0

0

0

0

0

Solanaceae

Solanum pubigerum Dunal

1

0

0

0

0

0

0

0

0

0

0

0

Solanaceae

Solanum sp.

0

0

0

0

0

0

1

0

0

0

0

0

Cannabaceae

Trema micranthum (L.) Blume

0

1

0

0

0

0

0

0

0

0

0

1

Ericaceae

Vaccinium leucanthum Schltdl.

0

0

0

0

0

0

0

0

0

0

1

0

Number of species

6

9

6

5

4

5

7

5

7

5

4

7

 

 

Species richness (N0) was higher for the La Ciénega community (22 species), but lower in the number of abundant and very abundant species (N1: LC=8.7, and TC=9; N2: LC=4, and TC=7); Hutcheson's t-test did not show significant differences (P=0.57) for diversity (H') between the coffee plantations of the study communities (H'=2.16 for LC and 2.25 for TC), but it did for dominance (λ) (LC=0.23, TC=0.13, P=0.021). As for the species shared among the plots, the average was 1.1 (LC=1.5±0.6 d. s.; TC=1.8±0.56 d. s.), and the similarity (JI) was 0.13 (LC=0.15, TC=0.31) (Figure 4).

 

Figure 4. Dendrogram of species similarity recorded in the coffee plantations of the plots in Tres Cruces (TC) and La Ciénega (LC).

 

The most abundant species were Alnus acuminata Kunth with 55 individuals in LC, and Myrsine juergensenii (Mez) Ricketson & Pipoly with 18 individuals in TC. The average density for LC was 1 703.6 ind. ha-1, and 1 874.7 ind. ha-1 for TC values without significant differences (P=0.64, t df, 68=-0.111).

The average tree height recorded in LC coffee plantations was 11.5 m, and in TC it was 11.71 m, these values also showed no differences (P=1.01, t df, 138=1.46). The species with the highest average heights were Hesperocyparis benthamii in LC and Pinus pseudostrobus Lindl. in TC. Regarding crown diameter, the averages by community were 5.63 in LC and 5.50 m in TC, with no differences (P=0.36, t df, 138=4.0). However, for normal diameter, the averages of 19.56 for LC and 16.03 cm for TC did show significant differences (P=0.01, t df, 138=1.46) (Figure 5).

 

A = Normal diameter; B = Height; C = Crown diameter.

Figure 5. Frequency histograms by community.

 

Importance value of tree species. The species with the highest IVI were Myrsine juergensenii in TC with 19 %, and Alnus acuminata in LC with 9 % (Figure 6), both species being native.

 

Figure 6. Importance value index (IVI) of tree species in the coffee plantations of the study communities.

 

Local management of coffee plots. Coffee growers in the communities under study indicated that coffee cultivation began approximately 30 years ago in LC and 10 years ago in TC, due to the economic benefits and the ease of establishment; nevertheless, it was necessary to invest family work and some economic resources. In TC 100 % of the farmers interviewed indicated that the vegetation on their land, before establishing the crop, was coniferous forest (56 % oak forest and 44 % pine-oak forest); in LC 60 % indicated that there was pine-oak forest, 35 % that there was cultivated land (corn, beans, and squash) and only 5 % stated that there was no vegetation (induced pasture). Coffee growers in TC mentioned 24 species of trees that they use as shade, in LC they only mentioned 14 (Table 3). 

 

Table 3. Tree species (common and Me'phaa names) mentioned by producers and Use Value Index (UVI) by species and community.

Community

Common name

Name in the Me´phaa language

Scientific name

S

M

Fr

Fl

F

UVI

Tres Cruces

Cuajinicuil

Ixé grian

Inga sp.

X

X

0.09

Molinillo

Ixé xta'majá

Clethra mexicana DC.

X

X

X

0.13

White oak

Ixé xánúu

Quercus candicans Née

X

X

X

0.13

Red oak

Ixé xtámañá

Quercus scytophylla Liebm.

X

X

X

0.13

Reddish oak

Ixé xíxó

Quercus liebmannii Oerst. ex Trel.

X

X

X

0.13

Yellow oak

Ixé txàbun

Quercus sp.

X

X

X

0.13

Tepehuaje

Ixé xíxtá

Lysiloma acapulcense (Kunth) Benth.

X

X

0.09

Guava tree

Ixé ndíjia'

Psidium guajava L.

X

X

X

0.13

Heart flower

Ixé xda'kún

Magnolia krusei J. Jiménez Ram. & Cruz Durán

X

X

X

0.13

Jamaican nettletree

Ixé rúmá

Trema micranthum (L.) Blume

X

X

0.09

Pine

Ixé xti'ka

Pinus pseudostrobus Lindl.

X

X

0.09

Capulín

Ixé rúgu'

Cleyera pachyphylla Chun ex Hung T. Chang

X

X

X

0.13

Árbol de tizne

Ixé kidí

Solanum sp.

X

X

0.09

White marangola

Ixé xto’gojó

Saurauia pedunculata Hook.

X

X

0.09

Capulín de mayo

Ixé xká

Myrsine juergensenii (Mez) Ricketson & Pipoly

X

X

0.09

Umbrellawort

Ixé lañù

Miconia mirabilis (Aubl.) L. O. Williams

X

X

0.09

Lime

Ixé limú

Citrus limon (L.) Osbeck

X

0.04

Orange tree

Ixé láxa

Citrus sinensis (L.) Osbeck

X

X

0.09

Loquat

Xdu'ga

Eriobotrya japonica (Thunb.) Lindl.

X

X

0.09

Avocado

Ixé dúdii

Persea americana Mill.

X

X

0.09

Locustberry (Nanche)

Ixé luxó

Byrsonima cinerea DC.

X

X

0.09

Izote

Ixé béxó

Yucca sp.

X

X

0.09

Mango tree

Ixé mángo'

Mangifera indica L.

X

X

0.09

Grapefruit

Láxa bu'rru

Citrus aurantium L.

X

X

0.09

La Ciénega

Andean alder

Íxe gro ' on

Alnus acuminata Kunth

X

X

X

0.19

Cherimoya

Íxe ra'gó

Annona cherimola Mill.

X

X

0.13

Sangre de Cristo

Íxe íg'dí

Bocconia arbórea S. Watson

X

X

0.13

Nutmeg hickory

Tsida'

Carya myristiciformis

 (F. Michx.) Nutt ex Elliott

X

X

X

X

0.15

Citron

Íxe limo'

Citrus medica L.

X

X

0.13

Grapefruit

Íxe láxa

Citrus aurantium L.

X

X

0.13

Molinillo

Íxe xá

Clethra rosei Britton

X

X

X

0.19

Cuaniquil

Íxe drian

Inga edulis Mart.

X

X

X

0.19

Árbol de comal

Íxe ì'fuíí

Lippia umbellata Cav.

X

X

X

0.19

Mango tree

Íxe xkodee

Mangifera indica L.

X

X

0.13

Sensitive plant

Íxe tsu´wuá

Mimosa lacerata Rose

X

X

0.13

Avocado

Íxe xdúdiin

Persea americana Mill.

X

X

X

0.19

Chokecherry

Íxe pulí

Prunus virginiana L.

X

X

X

0.19

Oak

Íxe xtamaña

Quercus peduncularis Née

X

X

0.13

Cypress

Xtíkha

Hesperocyparis benthamii (Endl.) Bartel

X

X

0.13

Guava

Íxe díin

Psidium guajava L.

X

0.06

S = Shade; M = Organic matter; Fr = Fruit; Fl = Flowers; F = Fuel.

 

Use of tree species. The tree species recognized by coffee growers in the study communities, in addition to being used for shade, are also appreciated for generating organic matter, fruits, flowers (edible and medicinal), timber, and fuel (firewood); those with the highest use value are mostly native species. In LC, the Andean alder (Alnus acuminata) was the one with the highest value (0.19), while in TC the highest values were for eight species (0.13), including oak species (Quercus spp.) and molinillo (Clethra mexicana DC.) (Table 3).

 

 

 

Discussion

 

 

All the coffee plantations of the study communities include the presence of representative families for the vegetation type among them, the Fagaceae (Sánchez and Schwentesius, 2015; Silva et al., 2021), as well as the most species-rich Fabaceae, recorded by López-Gómez and Williams-Linera (2006) in Veracruz state and by García et al. (2015) in the Sierra de Atoyac in Veracruz. The richness of shade trees in the coffee plantations of the study communities, which included 35 species, is similar to that recorded by other authors (Ramos et al., 2020; Ruiz-García et al., 2020); also, 83.3 % of the species are native, bespeaking traditional management (Moguel and Toledo, 1999), which contributes to their conservation. On the other hand, the presence of taxa of the Quercus, Alnus, and Myrsine genera is due to their qualities for shade and to their being part of the original forests, in addition to their multiple uses (as fuels and producers of organic matter) and their rapid establishment (Moguel and Toledo, 1999; Silva-Aparicio et al., 2021; Mozo and Silva, 2022).

The structure of the shade tree community in the coffee plantations of the study communities exhibited differences in terms of normal diameter that can be related to the composition of species, which depends to a great extent on the management of the plots, where the producer decides what to plant or eliminate according to the environmental, economic, and cultural characteristics of his community. They design their coffee plantation with certain species and define the density, diameter, height, and canopy cover required for the good development of the coffee trees (Cruz, 2004; Martínez et al., 2004).

In this sense, the abundance and density of Myrsine juergensenii and Clethra mexicana was higher in TC, and that of Alnus acuminata and Solanum pubigerum Dunal in LC. This differs from what has been recorded by various authors (Silva-Aparicio et al., 2021; Reyes et al., 2022), who report taxa such as Musa paradisiaca L. and Inga spp. as the most abundant. The average heights recorded were 11.71 m in TC and 11.48 m in LC, unlike the values documented by Reyes et al. (2022) of 10 m. This is due to the type of species used, the management of the plots, and the type of vegetation. In this regard, Silva et al. (2013) indicate that, in cocoa plantations in Nicaragua, a shade tree averages in height 15-25 m and has an open crown that does not lose foliage in the dry season and the best rapid growth rate. However, the manuals of projects like Maximizing Opportunities in Coffee and Cocoa in the Americas (MOCCA, 2022) cite that the appropriate height is 4 to 5 m above the height of the coffee plant, which also depends on the management, the variety grown, and the species used as shade (Anacafé, 2019).

The average diameter of the species associated with coffee was 16.03 cm in TC and 19.53 cm in LC, which may be related to the composition, since in TC there were species that reach large diameters, such as Pinus pseudostrobus. Authors such as Sánchez-Clavijo et al. (2007) indicate an average diameter of 10 cm, and Silva-Aparicio et al. (2021) an average of 10.83 cm, which is related to the management; that is, the producer makes use of trees with larger diameters for the purpose of limiting the space to establish the largest number of coffee plants, in addition to monitoring the shade, as, according to Sánchez et al. (2017), it should be slight, with a continuous supply of easily degradable leaf litter (with a decomposition rate of k=0.415, depending on environmental conditions) (Munguía, 2007).

In the present study, the average canopy cover in TC was 5.5 m, and 5.73 m in LC, consistently with the above; however, there is a lack of information on the rate of degradation of the taxa associated with coffee plantations, from those with thin consistencies such as Inga spp. to coriaceous taxa like Quercus spp.

According to the Shannon-Wiener Index, the average diversity was 2.16 for LC and 2.25 for TC, values close to those recorded by Ramos et al. (2020) of 3.04, and by Silva-Aparicio et al. (2021) of 2.05. However, they are high in comparison with the values for the coffee growing areas of Soconusco estimated by Reyes et al. (2022) of 1.1, due to the tendency to the establishment of species of the Inga genus. As for the dominance (λ) per community (0.23 for LC and 0.14 for TC) and the effective number of species (abundant and very abundant, N1: LC=8.7, TC=9; N2: LC=4, TC=7), the values differ, as in relation to other works, such as the study by Silva-Aparicio et al. (2021), who report an average dominance of 0.14 and a number of species rated abundant (N1, 7.7) and very abundant (N2, 4.1). Variation in the richness and abundance of established species in each plot depends on both the environmental characteristics and the management (Manson et al., 2018). This last aspect could reflect a similar diversity (H') in the coffee plantations of the study communities, as the test of means did not exhibit significant differences; however, the environmental difference is evident in the composition of species.

The above also reflects the beta diversity values, since the average similarity (Ji) between the plots was only 0.31, that is only 31 % of the species are shared. In this sense, certain authors such as Ramos et al. (2020) indicate that the species composition of different coffee plantations is linked to the original vegetation, without neglecting the management as a determining factor, given that the producers decide which trees to leave and which to fell, depending on the needs of the coffee trees and their own economic needs.

Notably, in the two studied communities, the species with the highest IVI were native (Alnus acuminata in LC and Myrsine juergensenii in TC), consistently with Moreno-Guerrero et al. (2020), who also cites species that are part of the original vegetation, such as Cedrela odorata L., Quercus crispifolia Trel., Tabebuia rosea (Bertol.) DC., and Guarea glabra Vahl. Likewise, Reyes et al. (2022) mention Inga micheliana Harms (synonym of Inga flexuosa Schltdl.), Tabebuia donnell-smithii Rose (synonym of Roseodendron donnell-smithii (Rose) Miranda), Cedrela odorata, and Tabebuia rosea as the species with the highest IVI. The presence of native species is due to their adaptation to the environmental characteristics; likewise, their permanence is also an indicator of the preference of the producers for these trees, since they generate additional benefits such as timber, fruit and flowers, and they fixate nitrogen, in addition to providing environmental services, among others (Sánchez et al., 2017).

The uses of registered tree species refer to the needs of producers; in this regard, Sánchez and Schwentesius (2015), Sánchez et al. (2017), and Ramos et al. (2019) point out that tree taxa, in addition to providing shade for the coffee trees, are also used as firewood, as well as for timber, fruit, and organic matter. In the studied communities, coffee growers agree in recognizing that the trees in their plots have at least one function (shade, organic matter, fruits, flowers, and fuel); also, native species (such as pines, oaks, Andean alders) are used for shade, wood, and fuel; on the other hand, introduced species are used to obtain fruits (such as citrus fruits, annonas and bananas) that complement the family diet and in some cases are marketed. In LC, the species with the highest IVI and UVI was the same (Alnus acuminata), which reinforces its importance, while in the case of TC, it is not similar. However, Quercus species with high importance values are those with the highest use value, which may indicate the importance of native species for the inhabitants of the study communities and reinforces the relevance of these agroecosystems for the conservation of plant diversity.

 

 

Conclusions

 

 

The composition of species associated as providers of shade in the coffee plantations of the study communities includes 83.3 % of native taxa, the best-represented families being Fagaceae and Fabaceae. The diversity of species estimated in the study communities is within the range recorded in other regions. Species similarity between LC and TC coffee plantations is low. The structure of the shade tree community differs only in diameter between the two studied communities, and the species with the highest Importance Value Index, including Myrsine juergensenii, Clethra mexicana and Quercus scytophylla Liebm., are native. The use categories registered for the species associated with coffee plantations refer to the function fulfilled by the trees within the coffee system (providing shade and organic matter) and within the family (providing food and raw materials), in addition to the provision of environmental services. The structure of the shade tree community in the coffee plantations of the Montaña de Guerrero Region exhibits variations due to environmental conditions (especially altitude) and management conditions. Likewise, the species with the highest IVI and UVI are native and relevant for the agroecosystem and the conservation of vegetation diversity.

 

Acknowledgments

 

The authors would like to thank the cooperating coffee growers in the communities of La Ciénega, Malinaltepec, and Tres Cruces, Acatepec, for allowing us to work on their plots.

 

Conflict of interest

 

The authors declare that they have no conflict of interest.

 

Contribution by author

 

Marisa Silva Aparicio: conceptualization of the research, revision and analysis of the information, drafting and editing of the manuscript; Carmelo Francisco Olguín: field data collection, drafting and revision of the manuscript; Severino Jesús Cruz: field data collection, drafting and revision of the manuscript.

 

 

References

Anta F., S. 2006. El café de sombra: un ejemplo de pago de servicios ambientales para proteger la biodiversidad. Gaceta Ecológica (80):19-31. https://www.redalyc.org/pdf/539/53908002.pdf. (19 de noviembre de 2022).

Asociación Nacional del Café (Anacafé). 2019. Guía de variedades de café: Guatemala. Anacafé. Guatemala, GTM, Guatemala. 46 p. https://www.anacafe.org/uploads/file/9a4f9434577a433aad6c123d321e25f9/Gu%C3%ADa-de-variedades-Anacaf%C3%A9.pdf. (16 de diciembre de 2023).

Contento R., M. R. 2019. Estadística con aplicaciones en R. Universidad de Bogotá Jorge Tadeo Lozano. Bogotá, D. C., Colombia. 412 p. https://www.utadeo.edu.co/sites/tadeo/files/node/publication/field_attached_file/libro_estadistica_con_aplicaciones_en_r_def_ago_11.pdf. (22 de agosto de 2023).

Cruz R., A. 2004. La importancia del hilite blanco (Alnus acuminata subsp. arguta (Schlecht.) Furlow) (Betulaceae) en la sombra de cafetales de Xochitlán de Vicente Suárez, Puebla, México. Tesis de Maestría. Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. Coyoacán, D. F., México. 198 p.

Escalante, M. y E. Somarriba. 2001. Diseño y manejo de los cafetales del Occidente de El Salvador. Agroforestería en las Américas 8(30):12-16. https://repositorio.catie.ac.cr/bitstream/handle/11554/6061/Diseno_y_manejo_de_los_cafetales.pdf?sequence=1&isAllowed=y. (13 de noviembre de 2022).

Espinoza-Guzmán, M. A., L. R. Sánchez V., M. del R. Pineda L., F. J. Sahagún S., D. Aragones B. y Z. F. Reyes G. 2020. Dinámica de cambios en el agroecosistema de cafetal bajo sombra en la cuenca alta de La Antigua, Veracruz. Madera y Bosques 26(2):1-13. Doi: 10.21829/myb.2020.2621974.

Farfán V., F. 2020. Producción de Coffea arabica variedad Castillo® en un sistema agroforestal, en el departamento de Santander. Revista Cenicafé 71(2):118-123. Doi: 10.38141/10778/71209.

García M., L. E., J. I. Valdez H., M. Luna C. y R. López M. 2015. Estructura y diversidad arbórea en sistemas agroforestales de café en la Sierra de Atoyac, Veracruz. Madera y Bosques 21(3):69-82. Doi: 10.21829/myb.2015.213457.

Hammer, Ø., D. A. T. Harper and P. D. Ryan. 2001. Past: Paleontological statistics software package for education and data analysis. Palaeontolologia Electronica 4(1):1-9. https://palaeo-electronica.org/2001_1/past/past.pdf. (13 de junio de 2023).

Ibarra-Isassi, J., I. T. Handa, A. Arenas-Clavijo, S. Escobar-Ramírez, I. Armbrecht and J. P. Lessard. 2021. Shade-growing practices lessen the impact of coffee plantations on multiple dimensions of ant diversity. Journal of Applied Ecology 58(5):919-930. Doi: 10.1111/1365-2664.13842.

Instituto Nacional de Estadística, Geografía e Informática (INEGI). 2008. Conjunto de datos vectoriales escala 1:1 000 000. Unidades climáticas (ITRF92). INEGI. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825267568. (10 de junio de 2023).

López-Gómez, A. M. y G. Williams-Linera. 2006. Evaluación de métodos no paramétricos para la estimación de riqueza de especies de plantas leñosas en cafetales. Boletín de la Sociedad Botánica de México 78:7-15. Doi: 10.17129/botsci.1717.

Lot, A. y F. Chiang (Comps.). 1986. Manual de herbario: Administración y manejo de colecciones, técnicas de recolección y preparación de ejemplares botánicos. Consejo Nacional de Flora de México A. C. Coyoacán, D. F., México. 142 p.

Magurran, A. E. 2004. Measuring Biological Diversity. Blackwell Publishing. Malden, MA, United States of America. 256 p.

Manson, R. H., A. Contreras H. y F. López-Barrera. 2008. Estudios de la biodiversidad en cafetales. In: Manson, R. H., V. Hernández-Ortiz, S. Gallina y K. Mehltreter (Edits.). Agroecosistemas cafetaleros de Veracruz: Biodiversidad, manejo y conservación. Instituto de Ecología A. C. (Inecol) e Instituto Nacional de Ecología (INE-Semarnat). Xalapa, Ver., México. pp. 1-14.

Manson, R. H., F. López B., V. Sosa F. y A. Ortega P. 2018. Biodiversidad y otros servicios ambientales en cafetales. Manual de mejores prácticas. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Conabio). Tlalpan, Cd. Mx., México. 74 p.

Martínez, M. Á., V. Evangelista, M. Mendoza, F. Basurto y C. Mapes. 2004. Estudio de la pimienta gorda, Pimenta dioica (L.) Merrill, un producto forestal no maderable de la Sierra Norte de Puebla, México. In: Alexiades, M. N. y P. Shanley (Edits.). Productos Forestales, Medios de Subsistencia y Conservación. Estudios de caso sobre sistemas de manejo de productos forestales no maderables. Volumen 3-América Latina. Centro para la Investigación Forestal Internacional (Cifor). Jakarta, B, Indonesia. pp. 23-41.

Maximizando oportunidades en café y cacao en las Américas (Mocca). 2022. Un cafetal productivo tiene sombra que lo cuida. United States of Department of Agriculture y Soluciones Empresariales para la Pobreza TechnoServe. Tegucigalpa, M. D. C., Honduras. 19 p.

Moguel, P. y M. V. Toledo. 1996. El Café en México, ecología, cultural indígena y sustentabilidad. Ciencias (43):40-51. https://www.revistas.unam.mx/index.php/cns/article/view/11519. (8 de noviembre de 2022).

Moguel, P. and M. V. Toledo. 1999. Biodiversity conservation in traditional coffee systems of México. Conservation Biology 13(1):11-21. Doi: 10.1046/j.1523-1739.1999.97153.x.

Molina, M. 2022. Paso a paso. Prueba de la t de Student para muestras independientes. Revista Electrónica de AnestesiaR 14(8):4. Doi: 10.30445/rear.v14i8.1060.

Moreno, C. E. 2001. Métodos para medir la biodiversidad. Ciencia y Tecnología para el Desarrollo (Cyted), Oficina Regional de Ciencia y Tecnología para América Latina y el Caribe (ORCYT) y Sociedad Entomológica Aragonesa (SEA). Zaragoza, Z, España. 83 p.

Moreno, C. E., F. Barragán, E. Pineda y N. P. Pavón. 2011. Reanálisis de la diversidad alfa: alternativas para interpretar y comparar información sobre comunidades ecológicas. Revista Mexicana de Biodiversidad 82(4):1249-1261. Doi: 10.22201/ib.20078706e.2011.4.745.

Moreno-Guerrero, V., V. Ortega-Baranda, E. I. Sánchez-Bernal e I. G. Nieto-Castañeda. 2020. Descripción del estrato arbóreo en combinación con café rústico en una selva mediana subperennifolia, Jocotepec, Oaxaca. Terra Latinoamericana 38(2):413-423. Doi: 10.28940/terra.v38i2.626.

Mostacedo, B. y T. S. Fredericksen. 2000. Manual de métodos básicos de muestreo y análisis en Ecología Vegetal. Proyecto de Manejo Forestal Sostenible (Bolfor). Santa Cruz de la Sierra, S, Bolivia. 87 p.

Mozo O., A. y M. Silva A. 2022. Caracterización del aprovechamiento de leña en una comunidad Me’phaa de la Montaña de Guerrero. Revista Mexicana de Ciencias Forestales 13(70):112-135. Doi: 10.29298/rmcf.v13i70.1263.

Munguía H., R. 2007. Tasas de descomposición de la hojarasca en un sistema agroforestal con café en el Pacífico de Nicaragua. La Calera 7(8):10-14. https://repositorio.una.edu.ni/2283/1/ppf04m966.pdf. (9 de diciembre de 2023).

Ramos R., S., M. A. Pérez O., G. Illescas P., J. A. Cruz R., H. Vibrans and D. Flores S. 2020. Diversity and traditional use of shade trees in agroecological coffee plantations. Revista de Geografía Agrícola (64):259-273. Doi: 10.5154/r.rga.2020.64.12.

Reyes R., J., J. A. Rodríguez M., D. de J. Pimienta de la T., M. A. Fuentes P., … y J. F. Aguirre M. 2022. Diversidad y estructura de los árboles de sombra asociados a Coffea arabica L. en el Soconusco, Chiapas. Revista Mexicana de Ciencias Forestales 13(71):4-27. Doi: 10.29298/rmcf.v13i71.1191.

Reyes-Reyes, J. y J. López-Upton. 2003. Crecimiento del cedro rosado (Acrocarpus fraxinifolius Wight. & Arn.) a diferentes altitudes en fincas cafetaleras del Soconusco, Chiapas. Revista Chapingo Serie Ciencias Forestales y del Ambiente 9(2):137-142. https://www.redalyc.org/pdf/629/62913142005.pdf. (9 de diciembre de 2023).

Ruiz-García, P., J. D. Gómez-Díaz, E. Valdes-Velarde, J. A. Tinoco-Rueda, M. Flores-Ordoñez and A. I. Monterroso-Rivas. 2020. Biophysical and structural composition characterization in agroforestry systems of organic coffee from Veracruz. Tropical and Subtropical Agroecosystems 23(2):1-17. Doi: 10.56369/tsaes.3102.

Sánchez H., S. y R. E. Schwentesius R. 2015. Diversidad arbórea en cafetales de San Vicente Yogondoy, Pochutla, Oaxaca. Revista de Geografía Agrícola (54):25-34. Doi: 10.5154/r.rga.2015.54.003.

Sánchez H., S., M. A. Mendoza B. y R. V. García H. 2017. Diversificación de la sombra tradicional de cafetales en Veracruz mediante especies maderables. Revista Mexicana de Ciencias Forestales 8(40):7-17. Doi: 10.29298/rmcf.v8i40.32.

Sánchez-Clavijo, L. M., J. E. Botero-Echeverri y J. G. Vélez. 2007. Estructura, diversidad y potencial para conservación de los sombríos en cafetales de tres localidades de Colombia. Cenicafé 58(4):304-323. https://www.cenicafe.org/es/publications/arc058%2804%29304-323.pdf. (12 de agosto de 2022).

Servicio de Información Agroalimentaria y Pesquera (SIAP). 2022. Anuario Estadístico de la Producción Agrícola. https://nube.siap.gob.mx/cierreagricola/. (9 de agosto de 2022).

Silva, C., L. Orozco, M. Rayment y E. Somarriba. 2013. Conocimiento local sobre los atributos deseables de los árboles y el manejo del dosel de sombra en los cacaotales de Waslala, Nicaragua. Agroforestería en las Américas (49):51-60. https://www.researchgate.net/publication/280055714_Conocimiento_local_sobre_los_atributos_deseables_de_los_arboles_y_el_manejo_del_dosel_de_sombra_en_los_cacaotales_de_Waslala_Nicaragua. (10 de noviembre de 2022).

Silva-Aparicio, M., C. Pacheco-Flores, E. Pacheco-Cantú, B. López-López y F. Ramírez-Mayo. 2021. Caracterización ecológica de los cafetales de la comunidad Me’phaa El Aserradero, Iliatenco, Guerrero. Ecosistemas y Recursos Agropecuarios 8(1):e2670. Doi: 10.19136/era.a8n1.2670.

Valencia A., S., M. Gómez-Cárdenas y F. Becerra-Luna. 2002. Catálogo de encinos del estado de Guerrero, México. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (Sagarpa) e Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP). Cuernavaca, Mor., México. 189 p.

World Flora Oline (WFO). 2023. WFO The World Flora Online (CC BY 4.0). Global Strategy for Plant Conservation and Convention on Biological Diversity. https://www.worldfloraonline.org/. (9 de agosto de 2023).

Zambrano-Intriago, L. F., M. P. Buenaño-Allauca, N. J. Mancera-Rodríguez y E. Jiménez-Romero. 2015. Estudio etnobotánico de plantas medicinales utilizadas por los habitantes del área rural de la Parroquia San Carlos, Quevedo, Ecuador. Revista Universidad y Salud 17(1):97-11. https://docs.bvsalud.org/biblioref/2017/09/692117/2400-7951-1-pb.pdf. (12 de agosto de 2022).

 

 

        

Todos los textos publicados por la Revista Mexicana de Ciencias Forestales sin excepción– se distribuyen amparados bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.