Revista Mexicana de Ciencias Forestales Vol. 14 (80)

Noviembre - Diciembre (2023)

Logotipo, nombre de la empresa

Descripción generada automáticamente

DOI: https://doi.org/10.29298/rmcf.v14i80.1401

Research note

 

Identificación de áreas potenciales para la reforestación con seis fabáceas arbóreas en Guanajuato

Identification of potential areas for reforestation with six arboreal Fabaceae in the state of Guanajuato

 

Ricardo Rivera Vázquez1*, Andrés Mandujano Bueno1

 

Fecha de recepción/Reception date: 1 de junio de 2023.

Fecha de aceptación/Acceptance date: 5 de octubre de 2023.

 

_______________________________

1INIFAP, Centro de Investigación Regional Centro, Campo Experimental Bajío. México.

 

*Autor por correspondencia; correo-e: rivera.ricardo@inifap.gob.mx

*Corresponding autor; e-mail: rivera.ricardo@inifap.gob.mx

Resumen

La pérdida y reducción de la cubierta forestal están relacionadas con la degradación del suelo y la disminución de servicios ambientales. Reforestar es un elemento clave para combatir el calentamiento global. Repoblar zonas deforestadas con especies forestales nativas aumenta la supervivencia y éxito de la plantación. Se planteó que de acuerdo con los requerimientos de altitud, pendiente, temperatura, precipitación, topografía, tipo, textura y profundidad del suelo y mediante el uso de la herramienta BIOCLIM es posible identificar y cuantificar las áreas potenciales de reforestación en el estado de Guanajuato para seis especies forestales de la familia Fabaceae. Con base en los requerimientos climáticos y edáficos, Prosopis laevigata fue el taxón con mayor superficie potencial para reforestar con 278 102 ha de aptitud buena y muy buena, Albizia occidentalis tuvo una superficie de 230 239 ha, para Acacia farnesiana (sinonimia de Vachellia farnesiana) se obtuvo un área de 157 491 ha, Lysiloma divaricata (sinonimia de Lysiloma divaricatum) de 149 434 ha, Leucaena esculenta de 120 968 ha, y en el caso de Acacia pennatula(sinonimia de Vachellia pennatula)se determinaron solamente 3 633 ha. Las áreas delimitadas son las zonas donde es posible plantar estas especies y garantizar mayor probabilidad de supervivencia y éxito en trabajos de reforestación, y con ello la restauración del paisaje.

Palabras clave: Albizia occidentalis Brandegee, BIOCLIM, cubierta forestal, Prosopis laevigata (Humb. & Bonpl. ex Willd.) M. C. Johnst., requerimientos climáticos, requerimientos edáficos.

Abstract

The loss and reduction of forest cover are related to soil degradation and the reduction of environmental services. Reforestation is a key element to fight global warming. Replanting deforested areas with native forest species increases the survival and success of the plantation. It was proposed that, according to the requirements of altitude, slope, temperature, precipitation, topography, soil type, texture and depth, and through the use of the BIOCLIM tool, it is possible to identify and quantify the potential reforestation areas in the state of Guanajuato by six forest species of the Fabaceae family. Based on climatic and edaphic requirements, Prosopis laevigata was the taxon with the largest potential area for reforestation with 278 102 ha of good and very good suitability, Albizia occidentalis occupied a surface area of 230 239 ha, 157 491 ha were estimated for Acacia farnesiana (synonym of Vachellia farnesiana), 149 434 ha for Lysiloma divaricata (synonym of Lysiloma divaricatum), 120 968 ha for Leucaena esculenta, and merely 3 633 ha for Acacia pennatula (synonym of Vachellia pennatula). The delimited areas are the zones where it is possible to plant these species and guarantee a greater probability of survival and success in reforestation works, and with it, the restoration of the landscape.

Key words: Albizia occidentalis Brandegee, BIOCLIM, forest cover Prosopis laevigata (Humb. &Bonpl. ex Willd.) M. C. Johnst., climatic requirements, edaphic requirements.  

 

  

Subject development

 

 

The loss and reduction of forest cover alters the functioning and capacity of forest ecosystems to provide ecosystem services such as soil erosion control, carbon capture and storage, rainwater harvesting, aquifer recharge, and food production, among others (ONUAA, 2012). In the state of Guanajuato, land use change, overexploitation of species, overgrazing, introduction of exotic taxa, illegal logging, and fires are the main causes of forest ecosystem degradation (SMAOT, 2021). According to Semarnat and CP (2002), environmental degradation is the deterioration of the environment due to the depletion of natural resources (air, water, soil, or vegetation), which leads to the destruction of ecosystems.

In the last decade, more than 250 000 ha have been reforested in Mexico to counteract the negative effects of deforestation and degradation (Burney et al., 2015). Reforestation allows the latter to be reversed, changing moderate-degradation areas to a low-degradation status (Semarnat and CP, 2002). However, in the best of cases, the survival rate in these plantations barely exceeds 60 % (Burney et al., 2015), and in some entities it is less than 40 % due, among other things, to the use of species that are poorly adapted to the environmental conditions of the plantation site, the lack of protection of these areas, and their conversion to agricultural land (Torres, 2021).

Ecological niche modeling by means of Geographic Information Systems (GIS) and ecological niche algorithms is a tool for assessing the actual or potential spatial distribution of species (Soberón et al., 2017) and generating land suitability maps for its development, which in turn are the basis for determining potential areas for reforestation, restoration, or taxon conservation (Garza-López et al., 2016; Manzanilla-Quijada et al., 2020).

Genetic (GARP), climate envelopes’ (BIOCLIM), and maximum entropy (MaxEnt) algorithms are used to model the ecological niche; these utilize ecogeographic variables such as latitude, longitude, altitude, slope, climate, and soil in the form of raster layers (Guisan and Zimmermann, 2000; Castellanos-Acuña et al., 2018).

Prosopis laevigata (Humb. & Bonpl. ex Willd.) M. C. Johnst., Albizia occidentalis Brandegee, Acacia farnesiana (L.) Willd. (synonym of Vachellia farnesiana (L.) Wight & Arn.), Lysiloma divaricata (Jacq.) J. F. Macbr. (synonym of Lysiloma divaricatum (Jacq.) J. F. Macbr.), Leucaena esculenta (DC.) Benth. and Acacia pennatula (Schltdl. & Cham.) Benth. (synonym of Vachellia pennatula (Schltdl. & Cham.) Seigler & Ebinger) are tree legumes native to the state of Guanajuato that can be used in reforestation programs. Therefore, the objective of this research was to identify and quantify the areas susceptible of reforestation with these species through the modeling of the ecological niche with Geographic Information Systems and the BIOCLIM analysis system, according to their environmental requirements.

The study covered the entire surface of the state of Guanajuato, located between 20°50'22" and 19°54'46" N, and 99°40'17" and 102°05'49" W. From a political-administrative point of view, the entity is made up of 46 municipalities and has a territorial area of 30 460 km2 (Inegi, 2017). Guanajuato has a rugged landscape with mountains and plateaus, which is why it is part of three physiographic provinces: the Eastern Sierra Madre, the Central Plateau, and the Transversal Neovolcanic Axis (Inegi, 2017). According to García's (2004) classification, the predominant climates are semi-warm sub-humid (type (A)C(w0)), semi-arid temperate (BS1kw), and sub-humid temperate (C(w1)).

The following activities were carried out for the development of the work: (a) Description of the habitat with data provided by the Comisión Nacional Forestal (National Forest Commission) (Conafor, 2018) for reforestations in the last ten years in areas of Guanajuato, Mexico, (b) Bibliographic review of the requirements of forest species with respect to the altitude and slope of the terrain, precipitation and mean annual temperature, soil type, texture and depth, (c) Construction of a database of the environmental requirements of each taxon with the information obtained in steps (a) and (b), (d) Stratification of digital layers of environmental information according to the requirements of each species, (e) Using the BIOCLIM algorithm with the DIVA GIS software version 4 (Hijmans et al., 2004) to generate an ecological interval and the potential distribution of the taxa, and (f) Editing of the resulting layers and generation of the maps of potential suitability of the territory for each species, excluding agricultural areas, bodies of water, and urban areas of the state.

Table 1 describes the environmental variables and intervals used in the identification and quantification of potential areas for reforestation with the six tree taxa. Figure 1 shows the maps generated based on BIOCLIM.

 

Table 1. Climatic variables for each forest species.

Environmental variable

Species

Acacia farnesiana (L.) Willd.

Acacia pennatula (Schltdl. & Cham.) Benth.

Albizia occidentalis Brandegee

Leucaena esculenta (DC.) Benth.

Lysiloma divaricata (Jacq.) J. F. Macbr.

Propsopis laevigata (Humb. & Bonpl. ex Willd.) M. C. Johnst.

Altitude (masl)

Minimum

36

0

600

0

0

0

Optimal

392

1 200

850

900

1 900

Maximum

2 500

1 700

2 100

1 000

1 400

2 300

Slope (%)

Excelent

25-35

20-30

20-30

18

25

0-30

Rainfall (mm)

Minimum

400

500

539

500

800

552

Optimal

868

1 300

846

1 200

1 000

900

Maximum

1 500

2 500

1 506

2 000

1 800

1 200

Temperature (°C)

Minimum

13.5

5.0

0.2

-1.0

0.0

13.5

Optimal

24.7

20.0

22.3

27.0

19.0

20.5

Maximum

28.5

46.0

40.5

46.0

30.0

28.5

Soil texture

Loamy clayey

Loamy clayey

Loamy clayey

Loamy clayey

Loamy clayey

Sandy, clayey-sandy

Soil type

Regosol

Andosol

Regosol

Regosol

Vertisol

Yermosol

Soil depth (cm)

50

100

50-100

30

150

>50

Acacia farnesiana (L.) Willd. (synonym of Vachellia farnesiana (L.) Wight & Arn.), Acacia pennatula (Schltdl. & Cham.) Benth. (synonym of Vachellia pennatula (Schltdl. & Cham.) Seigler & Ebinger), Lysiloma divaricata (Jacq.) J. F. Macbr. (synonym of Lysiloma divaricatum (Jacq.) J. F. Macbr.).

 

 

 

 

Acacia farnesiana (L.) Willd. (synonym of Vachellia farnesiana (L.) Wight & Arn.), Acacia pennatula (Schltdl. & Cham.) Benth. (synonym of Vachellia pennatula (Schltdl. & Cham.) Seigler & Ebinger), Lysiloma divaricata (Jacq.) J. F. Macbr. (synonym of Lysiloma divaricatum (Jacq.) J. F. Macbr.).

Figure 1. Potential areas for reforestation with the six studied tree species.

 

With the BIOCLIM ecological niche model, it was possible to determine the potential distribution of the six taxa analyzed, which are similar to the species studied by Martínez-Méndez et al. (2016). The areas of potential distribution identified in the state correspond to areas of lowland rainforest, scrubland, and grasslands. The similarity in the delimitation of the potential areas responds to the fact that species such as Acacia farnesiana, Prosopis laevigata, Albizia plurijuga (Standl.) Britton & Rose, Eysenhardtia polystachya (Ortega) Sarg., Lysiloma microphylla Benth. and Senna polyantha (Moc. & Sessé ex Collad.) H. S. Irwin & Barneby are associated with the plant formations present in the entity (Guevara-Escobar et al., 2008).

The largest potential area was for P. laevigata, due to its wide adaptive capacity, which agrees with the results obtained by Palacios et al. (2016) and Palacios et al. (2021). According to Rodríguez-Sauceda et al. (2019), it is tolerant to drought and to soils of low physical and chemical quality. Furthermore, from an environmental point of view, its inclusion in reforestation activities is key due to its great capacity to retain soil and improve its fertility, which helps to prevent desertification.

The mapping generated is a useful tool for planning reforestation strategies that consider the six native Fabaceae. In this sense, according to Guevara-Escobar et al. (2008), the percentage of survival in reforestation activities increases if the ecological niche factor is taken into account.

Of the six species considered in the study, Prosopis laevigata has the largest area suitable for use in reforestation programs.

The mapping generated for each of the six species is a guide to direct reforestation actions that will guarantee the increase of their survival and thus, the success of the plantations.

 

Acknowledgments

 

The authors would like to thank the Instituto de Planeación, Estadística y Geografía del Estado de Guanajuato, Iplaneg, (Institute of Planning, Statistics and Geography of the State of Guanajuato) for funding the Guanajuato State Forestry Program of which the research was part.

 

Conflict of interest

 

The authors declare that they have no conflict of interest.

 

Contribution by author

 

Ricardo Rivera Vázquez: development of the research, interpretation of the results, editing of the manuscript; Andrés Mandujano Bueno: interpretation of results, editing of the manuscript.

 

References

Burney, O., A. Aldrete, R. Álvarez R., J. A. Prieto R., J. R. Sánchez V. and J. G. Mexal. 2015. Mexico-Addressing challenges to reforestation. Journal of Forestry 113(4):404-413. Doi: 10.5849/jof.14-007.

Castellanos-Acuña, D., K. W. Vance-Borland, J. B. St. Clair, A. Hamann, … and C. Sáenz-Romero. 2018. Climate-based seed zones for México: guiding reforestation under observed and projected climate change. New Forests 49(3):297-309. Doi: 10.1007/s11056-017-9620-6.

Comisión Nacional Forestal (Conafor). 2018. Historial de Reforestaciones en Guanajuato. Conafor y Secretaría de Medio Ambiente y Recursos Naturales (Semarnat). Irapuato, Gto., México. 23 p.

García, E. 2004. Modificaciones al sistema de clasificación de Köppen. Instituto de Geografía de la Universidad Nacional Autónoma de México. Coyoacán, México D. F., México. 90 p.

Garza-López, M., J. M. Ortega-Rodríguez, F. J. Zamudio-Sánchez, J. F. López-Toledo, F. A. Domínguez-Álvarez y C. Sáenz-Romero. 2016. Calakmul como refugio de Swietenia macrophylla King ante el cambio climático. Botanical Sciences 94(1):43-50. Doi: 10.17129/botsci.500.

Guevara-Escobar, A., E. González-Sosa, H. Suzán-Azpiri, G. Malda-Barrera, … y D. Olvera-Valerio. 2008. Distribución potencial de algunas leguminosas arbustivas en el Altiplano Central de México. Agrociencia 42(6):703-716. https://www.scielo.org.mx/pdf/agro/v42n6/v42n6a10.pdf. (23 de abril de 2022).

Guisan, A. and N. E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135(2-3):147-186. Doi: 10.1016/S0304-3800(00)00354-9.

Hijmans, R. J., L. Guarino, C. Bussink, P. Mathur, … y E. Rojas. 2004. DIVA-GIS Versión 4. Sistema de Información Geográfica para el Análisis de Datos de Distribución de Especies. Manual. International Plant Genetic Resources Institute (IPGRI) y University of California Berkeley Museum of Vertebrate Zoology. Berkeley, CA, Estados Unidos de América. 83 p. https://www.diva-gis.org/docs/DIVA-GIS4_manual_Esp.pdf. (27 de julio de 2023).

Instituto Nacional de Estadística y Geografía (Inegi). 2017. Anuario Estadístico y Geográfico de Guanajuato 2017. Gobierno del Estado de Guanajuato e Inegi. Aguascalientes, Ags., México. 604 p.

Manzanilla-Quijada, G. E., E. J. Treviño-Garza, O. A. Aguirre-Calderón, J. I. Yerena-Yamallel and U. Manzanilla-Quiñones. 2020. Current and future potential distribution and identification of suitable areas for the conservation of Cedrela odorata L. in the Yucatan Peninsula. Revista Chapingo Serie Ciencias Forestales y del Ambiente 26(3): 391-408. Doi: 10.5154/r.rchscfa.2019.10.075.

Martínez-Méndez, N., E. Aguirre-Planter, L. E. Eguiarte y J. P. Jaramillo-Correa. 2016. Modelado de nicho ecológico de las especies del género Abies (pinaceae) en México: algunas implicaciones taxonómicas y para la conservación. Botanical Sciences 94(1):5-24. Doi: 10.17129/botsci.508.

Organización de las Naciones Unidas para la Agricultura y la Alimentación (ONUAA). 2012. El estado de los recursos de tierras y aguas del mundo para la alimentación y la agricultura. La gestión de los sistemas en situación de riesgo. ONUAA y Mundi-Prensa. Roma, RM, Italia. 314 p.

Palacios R., A., E. Jiménez M., R. Rodríguez L. y R. Razo Z. 2021. Distribución potencial de Prosopis laevigata (Humb. et Bonpl. ex Wiilld. M. C. Johnst en el estado de Hidalgo, México. Revista Mexicana de Ciencias Forestales 12(63):71-87. Doi: 10.29298/rmcf.v12i63.812.

Palacios R., A., R. Rodríguez L., M. de la L. Hernández F., E. Jiménez M. y D. Tirado T. 2016. Distribución potencial de Prosopis laevigata (Humb. et Bonpl. ex Willd) M. C. Johnston basada en un modelo de nicho ecológico. Revista Mexicana de Ciencias Forestales 7(34):35-46. Doi: 10.29298/rmcf.v7i34.81.

Rodríguez-Sauceda, E. N., L. Argentel-Martínez and D. Morales-Coronado. 2019. Water regime and gas exchange of Prosopis laevigata (Humb. & Bonpl. ex Willd.) M. C. Johnst. in two semi-arid ecosystems in southern Sonora. Revista Chapingo Serie Ciencias Forestales y del Ambiente 25(1):107-121. Doi: 10.5154/r.rchscfa.2018.09.068.

Secretaría de Medio Ambiente y Ordenamiento Territorial (SMAOT). 2021. Informe ambiental del estado de Guanajuato 2020. Gobierno del Estado de Guanajuato. Guanajuato, Gto., México. 126 p.

Secretaria de Medio Ambiente y Recursos Naturales (Semarnat) y Colegio de Postgraduados (CP). 2002. Evaluación de la degradación del suelo causada por el hombre en la República Mexicana. Escala 1:250 000. Memoria Nacional 2001-2002. Semarnat y CP. Texcoco, Edo. Méx., México. 69 p. https://www.researchgate.net/publication/307967321_SEMARNAT-CP_2003_Memoria_Nacional_2001,2002_Evaluacion_de_la_Degradacion_del_Suelo_causada_por_el_Hombre_en_la_Republica_Mexicana_escala_1250000_Memoria_Nacional. (14 de julio de 2023).

Soberón, J., L. Osorio-Olvera y T. Peterson. 2017. Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución. Revista Mexicana de Biodiversidad 88(2):437-441. Doi: 10.1016/j.rmb.2017.03.011.

Torres R., J. M. 2021. Factores ambientales y físicos que afectan la supervivencia de siete especies forestales en el Estado de México. Revista Mexicana de Ciencias Forestales 12(64):66-91. Doi: 10.29298/rmcf.v12i64.831.

 

 

 

        

Todos los textos publicados por la Revista Mexicana de Ciencias Forestales sin excepción– se distribuyen amparados bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.