Revista Mexicana de Ciencias Forestales Vol. 14 (75)

Enero – Febrero (2023)

Logotipo, nombre de la empresa

Descripción generada automáticamente


Review article


Los ambientes áridos y semiáridos: su relación con la dispersión y germinación de especies

Arid and semi-arid environments: their relationship with the dispersion and germination of species


Jaime Sánchez1, Eduardo Estrada Castillón2, Mario A. García Aranda1,3, Mario F. Duarte Hérnandez1, Fabián García González4, Luis M. Valenzuela Nuñez1, Gisela Muro Pérez1*


Fecha de recepción/Reception date: 16 agosto de 2022

Fecha de aceptación/Acceptance date: 15 de noviembre de 2022


1Universidad Juárez del Estado de Durango, Facultad de Ciencias Biológicas. México.

2Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales. México.

3Especies, Sociedad y Hábitat, A. C. México.

4Universidad Autónoma Chapingo, Unidad Regional Universitaria de Zonas Áridas. México.


*Autor para correspondencia; correo-e:

*Corresponding author; e-mail:



Semi-arid environments are dominated by extreme environmental conditions that directly influence seed dispersal and germination, as well as the establishment, development and maintenance of plant cover. This cycle depends directly on the availability of the water resource. However, in semi-arid areas water is limited. Therefore, the species that grow there develop adaptations for their dispersal, such as structures and mobility strategies to ensure their survival. The stages of dispersal until the seeds establishment follow different strategies or mechanisms to pass from one phase to another. This strategy in addition to humidity, water availability and substrates ensure dispersion. The interaction of seed banks and seed structures are a determining factor for species to adapt to arid and semi-arid zones. Additionally, the seminal microstructures play a particular role in each species by providing advantages in the face of inclement weather that they must overcome, as is the case with the prominent thread and the thin integuments of seeds, as well as the singular forms that facilitate not only water absorption but also dispersal towards safe places that accomplish the beginning of the establishment process.

Keywords: Adaptations, establishment, seminal structures, morphometry, semi-desert, seeds. 


Los ambientes semiáridos son dominados por condiciones extremas que influyen de manera directa en la dispersión y germinación de semillas, así como el establecimiento, desarrollo y mantenimiento de la cubierta vegetal. Este ciclo depende directamente de la disponibilidad del recurso hídrico. Sin embargo, en las zonas semiáridas el agua es limitada, por lo que las especies que ahí habitan presentan adaptaciones para su dispersión como el desarrollo de estructuras y estrategias de movilidad para asegurar su supervivencia. Las etapas de la dispersión hasta el establecimiento de las semillas se manifiestan mediante distintas estrategias o mecanismos para pasar de una fase a otra. Lo anterior aunado a la humedad, la disponibilidad de agua y los sustratos favorecen la dispersión. La interacción de los bancos de semillas y sus estructuras constituyen un factor decisivo para que las especies se adapten a las zonas áridas y semiáridas. Adicionalmente, las microestructuras seminales juegan un papel particular en cada especie al proporcionar ventajas ante las inclemencias que deben sortear, como sucede con el hilo prominente y los tegumentos delgados de las semillas, así como las formas singulares que facilitan no sólo la absorción de agua, sino la dispersión hacia sitios seguros que hagan posible iniciar el proceso de establecimiento.

Palabras clave: Adaptaciones, establecimiento, estructuras seminales, morfometría, semidesierto, semillas.






Dispersal and germination models in arid and semi-arid environments



Arid and semi-arid condition. To speak of aridity is to emphasize a scarcity of water, in which precipitation and atmospheric humidity behave below the annual averages defined worldwide by 840 mm (González, 2012). In Mexico, the average annual rainfall is 777 mm (INEGI, 1994; INEGI, 2014). Therefore, an arid zone has an evaporation greater than its annual rainfall (Tarango, 2005). If the rainfall values range between 300 to 700 mm per year, it can be considered a semi-arid zone (Paz and Díaz, 2018), but if the catchment is 100 mm or less, then it can be properly called a desert, which generates a particular degree of aridity for each area depending on the season of the year (Granados-Sánchez et al., 2011).

Seed dispersal models. Seed dispersal is the central point in the process of regeneration and establishment of vegetation (Traveset et al., 2014), which reach new areas, densities and extensions of future adult plants (Bullock et al., 2003). Dispersal is the distance of the seed from the mother plant (Howe and Smallwood, 1982). This event is extremely complex since elements of secondary dispersal (Wang and Smith, 2002) or dispersal syndromes (Simpson and Todzia, 1990) are directly and indirectly involved.

According to Grime (1974), three types of dispersal are considered in dry environments. The first is closely related to the predisposition of seeds to a high level of disturbance under stress, the second, to a tolerant strategy that results from a high level of stress and low disturbance and, finally, to a competitive strategy that implies adaptations to stress and disturbance conditions. These types of dispersal could be responsible for the adaptive responses of the seeds to initiate germination under different conditions of humidity, cold and heat (Went and Westergaard, 1949; Odion and Davis, 2000). In a similar way, germination strategies are affected by the number of reproductive events they present, depending on whether they are seeds of semelperous, iteroparous or annual species (Sánchez et al., 2015).



Dispersal strategies



Seed dispersal or dispersal syndrome. There are several strategies for seed dispersal, including wind, water and animals (Eriksson and Kiviniemi, 2001). Dispersal will depend on the characteristics of the seeds, the site and the dispersing agents (Colombo and de Viana, 2000). Studies in this context allow to understand the evolutionary processes of current plants, their distribution and, to a certain extent, model the future of plant populations (Sádlo et al., 2018).

From an ecological perspective, primary dispersal is the most addressed phenomenon, and is defined as the initial dispersal; secondary dispersal is any significant movement of viable seeds after primary dispersal, which often involves different agents. For example, in the first instance, a seed can be dispersed by bird defecation and, secondly, water runoff can intervene and re-distribute them spatially (Vander and Longland, 2004). There are studies that are based on hypotheses and experimental models to explain the process of seed dispersal, as well as their viability and vigor and the subsequent survival of seedlings (Maldonado-Peralta et al., 2016).

It is considered that the most used term to refer to seeds is the one proposed by Sernander (1927) as diaspora, which refers to plant elements or particles from plants. The seed is known as diaspore, propagule, grain, embryo (Garnier et al., 2017), germule, migrule or chore (van der Pijl, 1982). However, seed is the most used and correct term, since more than 3 million works call it that way, compared to grain, embryo and diaspora, which are the most related synonyms.

Something similar happens when it comes to seed dispersal. At present, this phenomenon has been classified into five types of dispersal, which, depending on the form of transport (phoresis), receive a specific classification. According to Alcaraz et al. (1999), the best known types of mobility and/or transport are autochory (the plant itself spreads the diaspore), anemochory (wind), barochory (gravity), hydrochory (water) and zoochory (animals).

The dispersal mechanism depends on the characteristics of the ecosystem, since it provides a general overview of the dominant dispersal mechanisms in the species distribution environment (Hughes et al., 1994) and even with the macro or microstructural characteristics of the species seeds (Sánchez-Salas et al., 2015). However, the process that dominates seed dispersal is of a secondary type; for this reason it can be considered an essential process, since most plants need terrestrial dispersers, considered to be the most effective agents (Jansen et al., 2004), and the plant's own strategies (Gutterman, 1994).

The basic dispersal strategy in plants is to produce and offer a large quantity of seeds with nutritional qualities that attract ants, rodents, birds and reptiles, which are the essential dispersers in semi-arid environments (Wunderle, 1997).

Seeds from semi-arid environments have odoriferous protein storage structures called "elaiosomes" (pulp, arils, ariloid) that are offered as a reward to different dispersers to increase the distance of dissemination (Camacho-Velázquez et al., 2018). Another form of distribution is by means of the wind, for which the plants have developed "wings" that favor wind dispersion (Abraham de Noir et al., 2002). Species from semi-arid environments such as Tecoma stans (L.) Juss. ex Kunth they have doubly winged seeds, which increases the probability of dispersal to greater distances towards safe sites (Young and Kelly, 2018) where they will germinate and later establish themselves (Sánchez-Salas et al., 2017).

Dispersal types. Knowing seed dispersal strategies is crucial to conserving native species that generally inhabit fragmented sites, a situation mainly caused by uncontrolled population growth (Sádlo et al., 2018) or to generate management plans that control invasive species.

When seeds fall, they can experience different types of dispersal:

a) Autochory, which is particularly related to anthropogenic or disturbance flora as in the taxa Asteraceae, such as Tagetes moorei H. Rob. var. breviligulata Villareal (cempasuchil) through the dispersion of the achenes (Serrato and Cervantes, 2012). It is considered a type of shot, because the fruit bursts at the time of dehiscence due to maturation, as in Bidens pilosa L., which violently projects the seeds at a considerable distance from the mother plant (Calderón et al., 2000).

b) Anemochory, seeds with this type of dispersal are regularly small, light, dry, and become dispersed by the wind and have accessory structures such as wings, hairs or feathers that help their dispersion and increase the thrust area within the seeds air currents (van der Pijl, 1972; Howe and Smallwood, 1982).

Mostly, this type of dispersal is related to grasses (Sádlo et al., 2018) such as the Mexican crowfoot (Chloris submutica Kunth) and Muhlenbergia rigida (Kunth) Kunth (Sánchez-Ken, 2019), vines (Vázquez and Givnish, 1998) and herbaceous plants such as dandelion (Taraxacum officinale F. H. Wigg.) (Sádlo et al., 2018), but if it is combined with the autocora dispersal it can occur in some shrubby species such as Larrea sp. (Abraham de Noir et al., 2002).

c) Barocoria is the name given to seed dispersal by gravity, a basic dispersal mechanism of climatophilous communities (when development depends on rainfall and general ecological conditions of the territory) (Giménez and González, 2011). It occurs in most plants with dehiscent fruits that, when the diaspore matures, fall freely to the ground due to its own weight or gravity, as in shrubby species (Vázquez and Givnish, 1998), especially Fabaceae such as huizache (Acacia farnesiana (L.) Will.), the guava leaf (Senna ripleyana (H. S. Irwin & Barneby) H. S. Irwin & Barneby), garabatillo or gatuño (Mimosa aculeaticarpa var. biuncifera (Benth.) Barneby) (Aguilar et al., 2021).

d) Hydrochory, which is the seed dispersal by means of water flow, which is related to species from aquatic ecosystems such as Eichhornia crassipes (Mart.) Solms and from riparian zones such as Typha angustifolia L. However, as paradoxical as it may seem, in dry regions (arid and semi-arid) there are species that have seeds adapted for hydrodispersion, with certain morphology such as the clam shape in the mezquite (Prosopis laevigata (Humb. & Bonpl. ex Willd.) M. C. Johnst.) and boat shape as in the bishop's cap cactus (Astrophytum coahuilense (H. Moeller) Kaufer) and asparagaceae the noa (Agave victoriae-reginae T. Moore) (Sánchez-Salas et al., 2012; Sánchez et al., 2017).

e) Zoochory occurs in seeds of trees, shrubs and some cacti with hard seeds, such as endozoochory in seeds of nopal (Opuntia rastrera F. A. C. Weber) (by ingestion), epizoochory such as the fruit of the devil's horn (Ibicella lutea (Lindl.) Van Eselt.) (externally attached to the body), and sinzoocoria such as the old man (Echinocereus longisetus (Engelm) Lem.) (dispersal by birds) according to Howe and Smallwood (1982).

Types of seed banks. The first study involving a seed bank was done by Darwin, who observed germination with soil samples from the bottom of a lake. The first work published in this regard was in 1882 by Putersen, in which the effect of burial depth on germination was assessed (Roberts, 1981). Currently, herbaceous plant seed banks are have been mostly addressed from their importance for agricultural matters.

In dry or desert environments, seed banks consist of seed aggregations of ephemeral, annual (Simpson et al., 1989) and persistent perennial plants that survive successfully because they spread the risk of germination in batches over several years; thus, this is the main pathway for plant recovery of species that can sometimes hardly reproduce asexually (Montenegro et al., 2006). These seed banks can be of the transitory type with seeds able to germinatie in less than a year, with a single reproductive event and deposited on the surface or among organic remains of vegetation (Thompson et al., 1997), or of the persistent type, characterized by having seeds with viability recorded for up to centuries, with several germinative events (Walck et al., 1996), as well as buried seeds (Milberg et al., 2000), which, in general, keep the vegetal cover even when they are subject to disturbances, fires and hydric fluctuations (Harper, 1977; Fenner, 1995; Odion and Davis, 2000; Sánchez et al., 2015).

Two factors directly influence seeds in order to be preserved without germinating in the seed bank: the intrinsic or typical of the diaspora, such as the types of dormancy and chemical inhibitors, and the extrinsic ones such as the scarcity of water, light, mechanical scarification or amount of oxygen, especially in buried terrestrial seed banks (Granados and López, 2001). These factors may be acting in the modification of the structure of the seed banks, since sites have been observed where the dominant species are ruderal (Sánchez et al., 2010).

Ecological importance of the seed bank as a strategy for the conservation of species. Knowing the seed banks in the soil is an alternative for the management and recovery of deforested sites, specifically with native taxa in order to reduce the risk of invasive species modifying the plant cover (Sánchez-Salas et al., 2015). It is extremely relevant to assess the "gene pool" (genetic reserve) of deforested or abandoned sites (Garza et al., 2010) to implement and evaluate restoration programs with species native to the areas. In the Cactaceae family, in genera such as Ariocarpus, Coryphantha, Echinocactus, Mammillaria and Obregonia, the fruits remain at the apex and/or between the thorns, which prevents their dispersal (Zavala-Hurtado y Valverde, 2003; Rodríguez-Ortega et al., 2006; Peters et al., 2009), and they behave, to a certain extent, like an aerial seed bank (De Souza et al., 2006).

Germination process. The diaspore is the wrapping or covering where the embryo is sheltered and protected, which will lead to a new plant called spermatophyte (Dimitri and Orfila, 1985; Carrión and Cabezudo, 2003). Water is the limiting factor by nature in dry environments for the diaspora to activate the germination process (Evenari, 1985; Hernández et al., 2015), so its response is adaptation to pluvio-environmental variations (Rees, 1994). Thus, this phenomenon is risky, the seeds have a limited time to respond to the rainfall pulses that are short (Escudero et al., 1997), so the seeds react quickly to ensure their survival (Gutterman, 1993).

The germination process is influenced by external agents such as the time to germinate, the absence or presence of light, the mineral structure of the soil and the content of reserves (Valverde et al., 2004), which also favors or inhibits it (Uruç and Demirezen, 2008). The first step in this direction is imbibition (Taylor et al., 1992) and it occurs in three phases:

I) Hydration: It consists of the movement of water inside the seed through a potential gradient from high to low energy (Black et al., 2006) that regulates the internal moisture level in the diaspore and the enzymatic function of the cell membranes (Brocklehurst and Dearman, 1983; Martínez-Balbuena et al., 2010), which will allow the regulation of the imbibition level required for an optimal hydration process that triggers the germination process. Thus, the hydration or hydration-dehydration-rehydration processes are the pre-germinative treatments that, par excellence, increase the germinative capacity in most seeds (Henckel, 1982; Dubrovsky, 1996; Sánchez-Salas et al., 2012; Sánchez et al., 2017) and call it “hydration memory” in the seeds of desert species.

II) Imbibition/Absorption: This phase reactivates the metabolic activity of the diaspore, which initiates the germination process. The absorption event is directly related to the permeability of the testa (Méndez et al., 2008) and can be affected by accessory structures such as envelopes or funicular envelopes as in Opuntia spp. (Monroy-Vázquez et al., 2017) that present an "aril or third integument" (Flores and Engleman, 1976; Porras-Flórez et al., 2017) that covers the seeds and protects them, in particular, in Phases I and II, in case of an interrupted environmental hydration process that causes dehydration in the diaspore (Taylor et al., 1992). The rate of imbibition is generally intermediate until the process is complete (Moreno et al., 2006), but this can vary depending on the size and diaspora of each species, inducing the start of the last phase of the process.

III) Germination: It is the stage in which the radicle is finally elongated due to the structures that surround the embryo, which generates an increase in the water absorption process that causes the expansion of the embryonic cells (Contreras et al., 2015). At the same time, intrinsic proteins called PIPs (Nonogaki et al., 2010) are activated, such as aquaporins that are responsible for transporting water through the membranes (Chávez et al., 2014) during the entire germination process, as well as the activation of intrinsic tonoplastic proteins called TIPs that regulate the passage of water through the membranes themselves (Nonogaki et al., 2010). This ends with cell growth and division and the emergence of the root system and the plumule begins (Vázquez et al., 1997). 



Morphostructural adaptations in seeds from dry environments



The intra and inter specific heteromorphism of the seeds is considered a response to favorable environmental events to perpetuate the multiple reproductive strategies of the plants, which favors their permanence in the site (Venable, 1985). In this sense, plants with heteromorphism are of particular interest to understand not only reproductive or evolutionary strategies, but, above all, the mechanism of dispersion and germination (Rocha, 1996); such is the case of the Agave victoriae-reginae seeds, which are medium to large, with a porous cover surrounded by air chambers that facilitate hydrodispersion and capture of water in short flooding periods (Sánchez-Salas et al., 2017).

When a specific diaspore morphology is associated with specific diaspore functions, an analysis of seed structures is possible (Venable and Brown, 1988). For example, species from dry environments such as Astrophytum coahuilense and A. myriostigma Lem. and the moriche palm (Mauritia flexuosa L. f.) produce seeds of different size that favor germination (Sánchez-Salas et al., 2012; Sánchez-Salas et al., 2015), since it has been determined that small seeds have dizzying or higher germination capacities, effectiveness in viability, emergence, survival and increased competitive ability among seedlings (Sánchez et al., 2010). In a similar way, the size of the seeds is also a strategy to reduce the loss of the seed bank, as it occurs with A. myriostigma (Sánchez-Salas et al., 2015) or the size of seeds can increase or decrease displacement in irregular topographies (Chambers et al., 1991), such as xerophytic desert scrub species such as Larrea tridentata (DC.) Coville, Agave lecheguilla Torr. and Atriplex canescens (Pursh) Nutt. (Granados-Sánchez and Sánchez-González, 2003).

It has been determined that even the weight of 1 mg of difference between groups of seeds (sizes) produce different results in germination (Sánchez-Salas et al., 2006), as in Abutilon theophrasti Medik. seeds. In which the group of large seeds (8.0-8.9 mg and 7.0-7.9 mg) achieved a higher germination percentage, since they may have greater nutrient storage capacity (Baloch et al., 2001). However, an inverse effect can also be generated, since the larger the size, the longer the germination time is, because the seed takes longer to hydrate and soak (Harper et al., 1970; Hernández-Valencia et al., 2017). Alternatively, as in the case of Stenocereus beneckei (Ehrenb.) A. Berger & Buxb., the seeds vary in weight and size, which influences the dispersal and subsequent establishment of seedlings (Ayala-Cordero et al., 2004).

Not only the size of the diaspore favors the dispersal process, but also the shape. For example, Astrophytum has a specialized diaspore shape for its dispersal specifically by water (hydrodispersion). It is characterized by the fact that five of its six species have navicular-shaped diaspores (Astrophytum asterias (Zucc.) Lem., A. capricorne (A. Dietr.) Britton & Rose, A. coahuilense, A. myriostigma y A. ornatum (DC.) Britton & Rose) (Bravo-Hollis and Sánchez-Mejorada, 1991), ball (Henrickson and Johnston, 1997) or hat (Barthlott and Hunt, 2000). The studies most related to morphometry with species from dry environments evaluated the shape, size, color and integumentary arrangements (Elizondo et al., 1994), since all are closely related to the germinative capacity of the diaspora (Maiti et al., 1994).

Macro and microstructural adaptations. Barthlott and Voit (1979) and Elizondo et al. (1994) considered that the micro-morphology in seeds of the Cactaceae family is highly variable in shape, size, color and even in integumentary arrangements, which produces effects on germination (Maiti et al., 1994).

In regard to studies that refer to the integumentary covers, those of Glass and Fitz (1992) on Aztekium hintonii Glass & Fitz Maurice; Elizondo et al. (1994) in seeds of Astrophytum capricorne, Echinocactus horizonthalonius Lem. and Epithelantha micromeris (Engelm.) F. A. C. Weber ex Britton & Rose. The seeds of A. myriostigma show the most complex microstructures in the Cactaceae family (Barthlott, 1981), which, both internally and externally, could be an adaptation to the environment where they are distributed (Sánchez-Salas et al., 2015). Macro characters, such as the shape of the diaspore, are important for the sudden hydrodispersion typical of dry environments (Sánchez-Salas et al., 2015). Regularly, hydrochoric seed forms have advanced characters for buoyancy such as light and small embryos, prominent hilum and thin integument that facilitate permeability (Sánchez-Salas et al., 2015). Sánchez et al. (2017) carried out a study with seeds of Agave victoriae-reginae where they supose that the seeds are permeable, because they do not have leathery integuments that hinder water absorption; contrary to that of García-Aguilera et al. (2000), who concluded that mezquite (Prosopis glandulosa Torr.) and huizache (Acacia farnesiana) seeds have a hard and impermeable cover.

The shape of the embryo can influence dispersion, assuming that some type of dispersing agent could eliminate the testa. If the embryo is of the ovoid or clam type (Sánchez et al., 2015) it will increase the chances of germinating, since not only does the seed have a navicular shape, but the embryo will also facilitate the dispersion process, which gives it a double dispersive capacity.

Regarding the microstructures, the xerophytic seeds could present some type of porous space accompanied by a navicular, clam or semi-flat lacriform shape that completely surrounds the testa, since the main function is to provide immediate buoyancy when in contact with water (Barthlott et al., 1997; Sánchez et al., 2017). The air chambers are formed by protective hypodermic collenchyma tissue that protect the embryo (Maiti and Perdome, 2003) during hydrodispersion.

The funicle in some seeds of semi-arid species is persistent (A. myriostigma) and facilitates nutrient uptake during the embryonic process (Sánchez-Salas et al., 2015). Other examples of hydrochoric seeds are bromeliads: Pitcairnia aphelandriflora Lem. and Pepinia punicea (Scheidw.) Brongn. & André (Rommel and Beutelspacher, 1999). Said structure acts as a hydrodispersive strategy, although when there is no water, by maintaining the funiculus they can have zoochoric mechanisms (Sánchez-Salas et al., 2015). Seeds with hydrodispersion mechanisms that maintain the funiculus are dispersed by chameleons and/or ants, possibly because the funiculus has oil (odoriferous substances that attract them) (Escala y Xena de Enrech, 1991; Sánchez-Salas et al., 2015). It seems that there is a resistance to drought, salinity and high temperatures of the seeds that live in extreme environments, obtained through the mother plant as in Campanula americana L. (Galloway, 2001), so it could be considered that temperature is a factor that does not affect imbibition through the seed coat, however, it does intervene in the germination process.

When a species presents combinations of various dispersal strategies, it is known as polychoric (Lindorf et al., 1986), which is an active and common process in seeds of xerophytic species (Wunderle, 1997), an example is white chilca (Baccharis spicata Hieron.) and tala (Celtis tala Gillies ex Planch.) (González and Cadenazzi, 2015).

In the Cactaceae family, the micropyle in the seeds is the most complicated structure to observe, its function is to absorb water to start the germination process and it is where the root system emerges (Sánchez-Salas et al., 2015).

Seed viability (longevity). It is estimated that seeds with a testa (seminal cover or seed shell) are more long-lived (Granados and López, 2001) compared to naked seeds. However, low temperatures and a low percentage of humidity favor a slow metabolism, which allows greater longevity (Doria, 2010); therefore, a negative aspect in arid and semi-arid regions are the high temperatures that could decrease this condition.

As time goes by, the embryo cells die and their germinative capacity is reduced, so the storage period is determined both genetically and environmentally, therefore, seeds for agricultural use are viable for less time compared to species from dry environments (Escobar-Álvarez et al., 2021).

There are different techniques to define the viability time: 1) Visual: the quality of the diaspora is observed (e.g. fissures, malformations), 2) Germinative evaluation of a population sample of seeds to determine viability (Araiza et al., 2011), and 3) Biochemical test (tetrazolium test): consists of evaluating the reduction process of living cells, by taking the hydrogen released by the dehydrogenase enzymes, which form a red hue, which indicates the viability potential in the seed (Victoria et al., 2006).

Germination vigor. The loss of vigor is the decrease in the germinative capacity known as physiological aging. From a biochemical point of view, vigor involves the ability of an organism to biosynthesis energy and metabolic compounds, such as proteins, nucleic acids, carbohydrates and lipids, which is associated with cell activity, cell membrane integrity and the use of reserve substances (Navarro et al., 2015). The final deterioration of the diaspora is death, when it no longer exhibits any activity. However, the seeds lose germination vigor before germination capacity, which is why it is common for seed lots to record similar germination values, but with different physiological age (degree of deterioration) and respond with different germination vigor (ISTA, 2022). The permeability to water and oxygen is a factor that can affect (positively or negatively) the germination of the seed, since with it, it is possible to start functioning (Chandra et al., 2017).

Latency and types of latency. Latency is a phenomenon of ecophysiological adaptation, which ensures the survival of a future individual by restricting germination at unfavorable times (Varela and Arana, 2011) that directly interacts with the diaspora's hydration memory (Dubrovsky, 1996). There is a wide range of latency intensity that can go from absolute, in which the diaspora does not germinate under any circumstances, the intermediate one, when the germination is only of a certain amount of the total lot of seeds, and the absent one, when the seeds germinate under any condition (Varela and Arana, 2011). According to Baskin and Baskin (1989), several types of latency are known depending on the cause and its embryonic characteristics. According to ISTA (2022), different types of seed dormancy are known:

1) Dormancy due to seed cover or exogenous. Physical dormancy: Testa or hardened parts that are impermeable. Mechanical dormancy: Hardened seed coat that prevents the expansion of the embryo during germination. Chemical dormancy: Production and accumulation of substances that inhibit germination.

2) Morphological or endogenous dormancy: Present in seed embryos with incomplete development at the time of maturation. Rudimentary embryos: Seeds with embryos barely embedded in an endosperm. Undeveloped embryos: Underdeveloped seeds shaped like torpedoes, which can be up to half the size of the seed cavity.

3) Internal latency: In many species, latency is controlled internally in the tissues. Physiological: Germination is prevented by an inhibitory physiological mechanism. Intermediate internal: Dormancy is induced by the seminal coats and surrounding storage tissues. Of the embryo: To reach germination, a period of humid cooling is required and due to the inability of the embryo to germinate normally.

4) Combined morphophysiological latency: Consists of the combination of embryonic underdevelopment with inhibitory mechanisms.

5) Combined exogenous-endogenous dormancy: Various combinations of dormancy in the shell or pericarp.






Seed dispersal in arid and semi-arid environments is a complex system, in which intrinsic and extrinsic (environment) aspects of seeds interact. To understand the aspects related to dispersal, it is necessary to know the dispersal models used by the seeds, which determine the best strategy to reach safe sites. The complexity of mobility lies in the specific macro and microstructural characteristics that the seeds of xerophytic species have, both for their dispersal and for their germination and subsequent establishment, which ensures the maintenance of plant cover in these environments.




We thank the referees of this work, who undoubtedly contributed to improving the writing of the same for its publication.


Conflict of interest


It is declared that there is no conflict of interest between the authors of this document.


Contribution by author


Jaime Sánchez: coordinator of the review and author; Eduardo Estrada Castillón: writing, compilation and edition; Mario A. García Aranda: review, compilation and edition; Mario F. Duarte Hérnández: review, compilation and edition; Fabián García González: review, compilation and edition; Luis M. Valenzuela Núñez: writing, compilation and edition; Gisela Muro Pérez: writing, compilation, edition and author by correspondence






Abraham de Noir, F., S. Bravo y R. Abdala. 2002. Mecanismos de dispersión de algunas especies de leñosas nativas del Chaco Occidental y Serrano. Quebracho Revista de Ciencias Forestales (9):140-150. (8 de septiembre de 2022).

Aguilar M., G., A. P. Léon G. y D. B. Mejía F. 2021. Botánica aplicada: Fabaceae. Facultad de Estudios Superiores Iztacala. Tlalnepantla de Baz, Edo. Méx., México. 17 p.

Alcaraz A., F. J., M. Clemente D., J. A. Barreña C. y J. Álvarez R. 1999. Manual de teoría y práctica de Geobotánica. Universidad de Murcia. Murcia, MU, España. 199 p.

Araiza L., N., E. Araiza L. y J. G. Martínez M. 2011. Evaluación de la germinación y crecimiento de plántula de Chiltepín (Capsicum annuum L variedad glabriusculum) en invernadero. Revista Colombiana de Biotecnología 13(2):170-175. (10 de septiembre de 2022).

Ayala-Cordero, G., T. Terrazas, L. López-Mata y C. Trejo. 2004. Variación en el tamaño y peso de la semilla y su relación con la germinación en una población de Stenocereus beneckei. Interciencia 29(12):692-697. (8 de septiembre de 2022).

Baloch, H. A., A. Di Tomasso and A. K. Watson. 2001. Intrapopulation variation in Abutilon theophrasti seed mass and its relationship to seed germinability. Seed Science Research 11(4):335-343. Doi: 10.1079/SSR200190.

Barthlott, W. 1981. Epidermal and seed surface characters of plants: Systematic applicability and some evolutionary aspects. Nordic Journal of Botany 1(3):345-355. Doi: 10.1111/j.1756-1051.1981.tb00704.x.

Barthlott, W. and D. Hunt. 2000. Seed diversity in the Cactaceae subfam. Cactoideae. D. Hunt Publisher. Milborn Port, SOM, United Kingdom. 173 p.

Barthlott, W. and G. Voit. 1979. Mikromorphologie der Samenschalen und Taxonomie derCactaceae: Ein raster-elektronenmikroskopischer Überblick. Plant Systematics and Evolution 132(3):205-229. Doi: 10.1007/BF00990466.

Barthlott, W., S. Porembski, M. Kluge, J. Hopke and L. Schmidt. 1997. Selenicereus wittii (Cactaceae): An epiphyte adapted to Amazonian Igapó inundation forests. Plant Systematics and Evolution 206:175-185. Doi: 10.1007/BF00987947.

Baskin, J. M. and C. C. Baskin. 1989. Physiology of dormancy and germination in relation to seed bank ecology. In: Leck, M. A., V. T. Parker and R. L. Simpson (Eds.). Ecology of soil seed banks. Academic Press Inc. San Diego, CA, USA. pp. 53–66.

Black, M., J. D. Bewley and P. Halmer. 2006. The encyclopedia of seeds: Science, Technology and Uses. CABI International. Wallingford, OX, United Kingdom. 828 p.

Bravo-Hollis, H. y H. Sánchez-Mejorada. 1991. Las Cactáceas de México. Vol. II. Universidad Nacional Autónoma de México. Coyoacán, D. F., México. 571 p.

Brocklehurst, P. A. and J. Dearman. 1983. Interactions between seed priming treatments and nine seed lots of carrot, celery and onion. I. Laboratory germination. Annals of Applied Biology 102(3):577-584. Doi: 10.1111/j.1744-7348.1983.tb02729.x.

Bullock, J. M., I. L. Moy, S. J. Coulson and R. T. Clarke. 2003. Habitat-specific dispersal: environmental effects on the mechanisms and patterns of seed movement in a grassland herb Rhinanthus minor. Ecography 26(5):692-704. Doi: 10.1034/j.1600-0587.2003.03525.x.

Calderón, J., E. Alán y U. Barrantes. 2000. Estructura, dimensiones y producción de semilla de maleza del trópico húmedo. Agronomía Mesoamericana 11(1):31-39. (8 de septiembre de 2022).

Camacho-Velázquez, A., S. Arias, F. García-Campusano, E. Sánchez-Martínez and S. Vázquez-Santana. 2018. Seed development and germination of Strombocactus species (Cactaceae): A comparative morphological and anatomical study. Flora 242:89-101. Doi:

Carrión, J. S. y B. Cabezudo. 2003. Perspectivas recientes en evolución vegetal. Anales de Biología (25):163-198. (2 de septiembre de 2022).

Chambers, J. C., J. A. MacMahon and J. H. Haefner. 1991. Seed entrapment in alpine ecosystems: effects of soil particle size and diaspore morphology. Ecology 72(5):1668-1677. Doi: 10.2307/1940966.

Chandra, S., R. R. Yadav, S. Poonia, Yashpal and A. Talukdar. 2017. Seed coat permeability studies in wild and cultivated species of soybean. International Journal of Current Microbiology and Applied Sciences (IJCMAS) 6(7):2358-2363. Doi: 10.20546/ijcmas.2017.607.279.

Chávez S., L., A. Álvarez F. y R. Ramírez F. 2014. Aspectos de interés sobre las acuaporinas en las plantas. Cultivos Tropicales 35(3):45-54. (12 de junio de 2022).

Colombo S., F. y M. L. de Viana. 2000. Requerimientos de escarificación en semillas de especies autóctonas e invasoras. Ecología Austral 10(2):123-131. (12 de junio de 2022).

Contreras Q., M. R., M. Pando M. y E. Jurado. 2015. Seed germination of plant species from semiarid zones after hydration-dehydration treatments. Revista Chapingo Serie Zonas Áridas14(1):41–50. Doi: 10.5154/r.rchsza.2015.03.002.

De Souza M., M., F. C. Maia y M. A. Pérez. 2006. Bancos de semillas en el suelo. Agriscientia 23(1):33-44. (20 de septiembre de 2022).

Dimitri, M. J. y E. N. Orfila. 1985. Tratado de morfología y sistemática vegetal. ACME Agency. Buenos Aires, BA, Argentina. 504 p.

Doria, J. 2010. Generalidades sobre las semillas: su producción, conservación y almacenamiento. Cultivos Tropicales 31(1):74-85. (11 de junio de 2022).

Dubrovsky, J. G. 1996. Seed hydration memory in Sonoran Desert cacti and its ecological implication. American Journal of Botany 83(5):624-632. Doi: 10.1002/j.1537-2197.1996.tb12748.x.

Elizondo E., J., J. Vladés R., S. Arias M. y S. L. Hatch. 1994. Micromorfología de las semillas de algunas cactáceas de la tribu Cacteae. Cactáceas y Suculentas Mexicanas 39(3):59-67. (2 de junio de 2022).

Eriksson, O. and K. Kiviniemi. 2001. Evolution of plant dispersal. In: Vuorisalo, T. O. and P. K. Mutikainen (Eds.). Life history evolution in plants. Kluwer Academic Publishers. Dordrecht, ZH, The Netherlands. pp. 215–237.

Escala, M. y N. Xena de Enrech. 1991. Estudio morfoanatómico de semillas mirmecócoras en un ecosistema semiárido venezolano. Orsis 6:45-59. (12 de mayo de 2022).

Escobar-Álvarez, J. L., O. Ramírez-Reynoso, P. Cisneros-Saguillán, R. Gutiérrez-Dorado, M. A. Maldonado-Peralta y J. L. Valenzuela-Lagarda. 2021. Viabilidad y germinación en semillas de maíz criollo del estado de Guerrero. Ecosistemas y Recursos Agropecuarios 8(2):e2963. Doi: 10.19136/era.a8nII.2963.

Escudero, A., L. F. Carnes and F. Pérez-García. 1997. Seed germination of gypsophytes and gypsovags in semiarid central Spain. Journal of Arid Environments 36(3):487-497. Doi: 10.1006/jare.1996.0215.

Evenari, M. 1985. Adaptations of plants and animals to the desert environment. In: Meir, N. and D. W. Goodall (Eds.). Ecosystems of the world: Hot deserts and arid shrublands. Elsevier. Amsterdam, AM, The Nederlands. pp. 79-92.

Fenner, M. 1995. Ecology of seed banks. In: Kigel, J. (Ed.). Seed development and germination. Academic Press. New York, NY, USA. pp. 507-528.

Flores, E. M. y E. M. Engleman. 1976. Apuntes sobre anatomía y morfología de las semillas de cactáceas. l. Desarrollo y estructura. Revista de Biología Tropical 24(2):199-227. (13 de abril de 2022).

Galloway, L. F. 2001. The effects of maternal and paternal environments on seed characters in the herbaceous plant Campanula americana (Campanulaceae). American Journal of Botany 88(5):832-840. Doi: 10.2307/2657035.

García-Aguilera, E., O. A. Martínez-Jaime, S. Torres y J. T. Frías-Hernández. 2000. Escarificación biológica del mezquite (Prosopis laevigata) con diferentes especies de ganado doméstico. In: Frías H., J. T., V. Olalde P. y J. Vernon C. (Eds.). El mezquite: árbol de usos múltiples: Estado actual del conocimiento en México. Universidad de Guanajuato. Guanajuato, Gto., México. pp. 117-123.

Garnier, E., U. Stahl, M. A. Laporte, J. Kattge andS. Klotz. 2017. Towards a thesaurus of plant characteristics: an ecological contribution. Journal of Ecology 105(2):298-309. Doi: 10.1111/1365-2745.12698.

Garza, M., M. Pando, D. Castillo y M. Gutiérrez. 2010. Semillas de un área degradada del noreste de México.Universidad Autónoma de Nuevo León. Linares, NL, México. 73.

Giménez de A., J. y O. González C. 2011. Pisos de vegetación de la Sierra de Catorce y territorios circundantes (San Luis Potosí, México). Acta Botánica Mexicana (94):91-123. Doi: 10.21829/abm94.2011.272.

Glass, C. y W. A. Fitz M. 1992. Nuevos taxa de cactáceas en Nuevo León. Cactáceas y Suculentas Mexicanas 37(1):11-21. (7 de junio de 2022).

González M., F. 2012. Las zonas áridas y semiáridas de México y su vegetación. Secretaría de Medio Ambiente y Recursos Naturales (Semarnat) e Instituto Nacional de Ecología (INE). Tlalpan, D. F., México. 173 p.

González, S. y M. Cadenazzi. 2015. Recolonización natural por bosque ribereño en margen izquierda del embalse de Salto Grande: Identificación de especies pioneras. Agrociencia Uruguay 19(1):1-13. (14 de septiembre de 2022).

Granados S., D. y G. F. López R. 2001. Ecología de poblaciones vegetales. Universidad Autónoma Chapingo. Texcoco, Edo. Méx., México. 144 p.

Granados-Sánchez, D. y A. Sánchez-González. 2003. Clasificación fisonómica de la vegetación de la Sierra de Catorce, San Luis Potosí, a lo largo de un gradiente altitudinal. Terra Latinoamericana 21(3):321-332. (19 de septiembre de 2022).

Granados-Sánchez, D., A. Sánchez-González, R. L. Granados V. y A. Borja de la R. 2011. Ecología de la vegetación del desierto chihuahuense. Revista Chapingo Serie Ciencias Forestales y del Ambiente 17:111-130. (8 de septiembre de 2022).

Grime, J. P. 1974. Vegetation classification by reference to strategies. Nature 250(5461):26-31. Doi: 10.1038/250026a0.

Gutterman, Y. 1993. Seed germination in desert plants. Springer Berlin Heidelberg. New York, NY, USA. 253 p.

Gutterman, Y. 1994. Strategies of seed dispersal and germination in plants inhabiting deserts. Botanical Review 60(4):373-425. (3 de diciembre de 2021).

Harper, J. L. 1977. Population biology of plants. Academic Press. London, LON, United Kingdom. 892 p.

Harper, J. L., P. H. Lovell and K. G. Moore. 1970. The shapes and sizes of seeds. Annual Review of Ecology and Systematics 1:327-356. Doi: 10.1146/

Henckel, P. A. 1982. Fisiología de la resistencia de las plantas al calor y a la sequía (en ruso). Nauka. Moscú, MOW, Rusia. 280 p.

Henrickson, J. and M. C. Johnston. 1997. A flora of the Chihuahuan Desert Region. University of Texas. Austin, TX, USA. 255 p.

Hernández A., Y., N. Soto P., M. Florido B., C. Delgado A., R. Ortiz P. y G. Enríquez O. 2015. Evaluación de la tolerancia a la salinidad bajo condiciones controladas de nueve cultivares cubanos de soya (Glycine max (L.) Merril). Cultivos Tropicales 36(4):120-125. (1 de enero de 2022).

Hernández-Valencia, I., D. Guitián y V. González. 2017. Efectos del tamaño de semillas y escarificación del endocarpio sobre la germinación de Mauritia flexuosa (Arecaceae). Acta Botánica Venezuelica 40(1):97-118. (1 de enero de 2022).

Howe, H. F. and J. Smallwood. 1982. Ecology of seed dispersal. Annual Review Ecology and Systematic 13:201-228. Doi: 10.1146/

Hughes, L., M. Dunlop, K. French, M. R. Leishman,… and M. Westoby. 1994. Predicting dispersal spectra: a minimal set of hypotheses based on plant attributes. Journal of Ecology 82(4):933-950. Doi: 10.2307/2261456.

Instituto Nacional de Estadística y Geografía (Inegi). 2014. Estadísticas históricas de México 2014. INEGI. Aguascalientes, Ags., México. 40 p. (22 de noviembre de 2022).

Instituto Nacional de Estadística, Geografía e Informática (INEGI). 1994. Estadísticas históricas de México. Tomo II. INEGI. Aguascalientes, Ags., México. 468 p. (22 de noviembre de 2022).

International Seed Testing Association (ISTA). 2022. International rules for seed testing. (13 de junio de 2022).

Jansen, P. A., F. Bongers and L. Hemerik. 2004. Seed mass and mast seeding enhance dispersal by a neotropical scatter-hoarding rodent. Ecological Monographs 74(4):569-589. Doi: 10.1890/03-4042.

Lindorf, H., L. de Parisca y P. Rodríguez. 1986. Botánica: Clasificación, estructura y reproducción. Ediciones de la Biblioteca EBUC-UCV. Caracas, CCS, Venezuela. 584 p.

Maiti, R. K., H. Perdome V. and V. P. Singh. 2003. Comparative morphology of six species of mother plants of Astrophytum grown in a green house. Crop Research Hisar 25(3):530-538. (4 de diciembre de 2021).

Maiti, R. K., J. L. Hernández-Pinero and M. Valdez-Marroquin. 1994. Seed ultrastucture and germination of some species of Cactaceae. Phyton 55:97-105.

Maldonado-Peralta, M. A., G. De los Santos G., J. R. García-Nava, C. Ramírez-Herrera  and V. M. Cetina-Alcalá. 2016. Seed viability and vigour of two nanche species (Malpighia mexicana and Byrsonima crassifolia). Seed Science and Technology 44(1):168-176. Doi: 10.15258/sst.2016.44.1.03.

Martínez-Balbuena, L., A. Maldonado-Arce y E. Hernández-Zapata. 2010. Elasticidad de las membranas biológicas. Revista Mexicana de Física 56(1):107-122. Doi: 10.48550/arXiv.1506.03438.

Méndez N., J. R., J. F. Merazo P. y N. J. Montaño M. 2008. Relación entre la tasa de imbibición y el porcentaje de germinación en semillas de maíz (Zea mays L.), caraota (Phaseoulus vulgaris L.) y quinchoncho (Cajanum cajan (L.) Mill.). Revista UDO Agrícola 8(1):61-66. (2 de febrero de 2022).

Milberg, P., L. Andersson and K. Thompson. 2000. Large-seeded species are less dependent on light for germination than small-seeded ones. Seed Science Research 10(1):99-104. Doi: 10.1017/S0960258500000118.

Monroy-Vázquez, M. E., C. B. Peña-Valdivia, J. R. García-Nava, E. Solano-Camacho, H. Campos y E. García-Villanueva. 2017. Imbibición, viabilidad y vigor de semillas de cuatro especies de Opuntia con grado de domesticación. Agrociencia 51(1):27-42. (21 de septiembre de 2022).

Montenegro S., A. L., Y. A. Ávila P., H. A. Mendivelso C. y O. Vargas. 2006. Potencial del banco de semillas en la regeneración de la vegetación del humedal Jaboque, Bogotá, Colombia. Caldasia 28(2):285-306. (10 de enero de 2022).

Moreno, F., G. A. Plaza y S. V. Magnitskiy. 2006. Efecto de la testa sobre la germinación de semillas de caucho (Hevea brasiliensis Muell.). Agronomía Colombiana 24(2):290-295. (6 de noviembre de 2021).

Navarro, M., G. Febles and R. S. Herrera. 2015. Vigor: essential element for seed quality. Cuban Journal of Agricultural Science 49(4):447-458. (21 de septiembre de 2022).

Nonogaki, H., G. W. Bassel and J. D. Bewley. 2010. Germination-still a mystery. Plant Science 179(6):574-581. Doi: 10.1016/j.plantsci.2010.02.010.

Odion, D. C. and F. W. Davis. 2000. Fire, soil heating, and the formation of vegetation patterns in Chaparral. Ecology Monographs 70(1):149-169. Doi: 10.2307/2657171.

Paz P., F. y H. Díaz S. 2018. Relaciones entre la precipitación, producción de biomasa e índices espectrales de la vegetación: alcances y limitaciones. Terra Latinoamericana 36:153-168. Doi: 10.28940/terra.v36i2.235.

Peters, E. M., C. Martorell and E. Ezcurra. 2009. The adaptive value of cued seed dispersal in desert plants: seed retention and release in Mammillaria pectinifera (Cactaceae), a small globose cactus. American Journal of Botany 96(2):537-541. Doi: 10.3732/ajb.0800157.

Porras-Flórez, D., S. Albesiano y L. Arrieta-Violet. 2017. El género Opuntia (Opuntioideae-Cactaceae) en el departamento de Santander, Colombia. Biota Colombiana 18(2):111-131. Doi: 10.21068/c2017.v18n02a07.

Rees, M. 1994. Delayed germination of seeds: a look at the effects of adult longevity, the timing of reproduction, and population age/stage structure. The American Naturalist 144(1):43-64. Doi: 10.1086/285660.

Roberts, H. A. 1981. Seed banks in the soil. In: Coaker, T. H. Advances in Applied Biology, Volume 6. Academic Press. New York, NY, USA. pp 1-55.

Rocha, O. J. 1996. The effects of achene heteromorphism on the dispersal capacity of Bidens pilosa L. International Journal of Plant Science 157(3):316-322. Doi: 10.1086/297351.

Rodríguez-Ortega, C., M. Franco y M. C. Mandujano. 2006. Serotiny and seed germination in three threatened species of Mammillaria (Cactaceae). Basic and Applied Ecology 7(6):533-544. Doi: 10.1016/j.baae.2006.04.001.

Rommel, C. y B. Beutelspacher. 1999. Bromeliáceas como ecosistemas: con especial referencia a Aechmea bracteata (Swartz) Griseb. Plaza y Valdés. México, D. F., México. 126 p.

Sádlo, J., M. Chytrý, J. Pergl and P. Pyšek. 2018. Plant dispersal strategies: a new classification based on the multiple dispersal modes of individual species. Preslia 90:1-22. (4 de julio de 2022).

Sánchez S., J., E. Jurado Y., M. Pando M., J. Flores R. y G. Muro P. 2010. Estrategias germinativas de las semillas en ambientes áridos. Revista Chapingo Serie Zonas Áridas 9:35-38. (27 de octubre 2021).

Sánchez S., J., G. Muro P., E. Jurado Y., M. Pando M., J. D. Flores R. y J. A. Alba Á. 2017. Bancos de germoplasma y estrategias germinativas en ambientes semiáridos, aliados en la conservación de especies. In: Cruz A., A., E. Castaños R., J. Valero P. y E. D. Melgarejo (Coord.). La biodiversidad en Durango: Estudio de Estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Conabio) y Secretaría de Recursos Naturales y Medio Ambiente de Durango (Srnyma). Durango, Dgo., México. pp. 561-566.

Sánchez, J., G. Muro, J. Flores, E. Jurado y J. Saenz-Mata. 2015. Los bancos de semillas y su germinación en ambientes semiáridos. Revista Ciencia UANL 18(73):69-76. (4 de diciembre de 2021).

Sánchez-Ken, J. G. 2019. Riqueza de especies, clasificación y listado de las gramíneas (Poaceae) de México. Acta Botánica Mexicana (126):e1379. Doi: 10.21829/abm126.2019.1354.

Sánchez-Salas, J., E. Jurado, J. Flores, E. Estrada-Castillón and G. Muro-Pérez. 2012. Desert species adapted for dispersal and germination during floods. Experimental evidence in two Astrophytum species (Cactaceae). Flora-Morphology, Distribution, Functional Ecology of Plants 207(10):707-711. Doi: 10.1016/j.flora.2012.08.002.

Sánchez-Salas, J., J. Flores y E. Martínez-García. 2006. Efecto del tamaño de semilla en la germinación de Astrophytum myriostigma Lemaire. (Cactaceae), especie amenazada de extinción. Interciencia 31(5):371-375. (24 de mayo de 2021).

Sánchez-Salas, J., J. Flores, E. Jurado, J. Sáenz-Mata, P. Orozco-Figueroa y G. Muro P. 2017. Hidrocoria en semillas de Agave victoriae-reginae T. Moore, especie en peligro de extinción: Morfología y anatomía como facilitadores de la hidro-dispersión y germinación. Gayana Botánica 74(2):251-261. Doi: 10.4067/S0717-66432017000200251.

Sánchez-Salas, J., J. Flores, G. Muro-Pérez, S. Arias-Montes y E. Jurado. 2015. Morfometría de semillas en la cactácea amenazada de extinción Astrophytum myriostigma Lemaire. Polibotánica (39):119-131. (11 de febrero de 2021).

Sernander, R. 1927. Zur Morphologie und Biologie der Diasporen. Almqvist & Wiksell. Uppsala, C, Sweden. 104 p.

Serrato C., M. Á. y T. Cervantes M. 2012. Morfología de estructuras florales relacionadas con la dispersión antitelécora de frutos en Tagetes moorei H. Rob. var. breviligulata Villarreal. Revista Chapingo Serie Ciencias Forestales y del Ambiente 18(3):261-269. Doi: 10.5154/r.rchscfa.2010.11.122.

Simpson, B. B. and C. A. Todzia. 1990. Patterns and processes in the development of the high Andean flora. American Journal of Botany 77(11):1419-1432. Doi: 10.1002/j.1537-2197.1990.tb12552.x.

Simpson, R. L., M. A. Leck and V. T. Parker. 1989. Seed banks: general concepts and methodological issues. In: Leck, M. A., V. T. Parker and R. L. Simpson (Eds.). Ecology of soil seed banks. Academic Press Inc. San Diego, CA, USA. pp. 3-8.

Tarango A., L. A. 2005. Problemática y alternativas de desarrollo de las zonas áridas y semiáridas de México. Revista Chapingo Serie Zonas Áridas 4(2):17-21. (22 de noviembre de 2022).

Taylor, A. G., J. Prusinski, H. J. Hill and M. D. Dickson. 1992. Influence of seed hydration on seedling performance. HortTechnology 2(3):336-344. Doi: 10.21273/HORTTECH.2.3.336.

Thompson, K., J. P. Bakker and R. M. Bekker. 1997. The soil seed banks of North West Europe: Methodology, density and longevity. Cambridge University Press. Cambridge, CB, United Kingdom. 276 p.

Traveset, A., R. Heleno and M. Nogales. 2014. The ecology of seed dispersal. In: Gallagher, R. S. (edit.). Seeds: The ecology of regeneration in plant communities.CAB International. London, LON, UK. pp. 62-93.

Uruç, K. and D. Demirezen Y. 2008. Effect of cadmium, lead and nickel on imbibition, water uptake and germination for the seeds of different plants. Fen Bilimleri Enstitüsü (17):1-10. (10 de septiembre de 2021).

Valverde, T., S. Quijas, M. López-Villavicencio and S. Castillo. 2004. Population dynamics of Mammillaria magnimamma Haworth. (Cactaceae) in a lava-field in Central Mexico. Plant Ecology 170(2):167-184. Doi: 10.1023/

van der Pijl, L. 1972. Principles of dispersal in higher plants. Springer-Verlag. Berlin, BER, Germany. 161 p.

van der Pijl, L. 1982. Principles of dispersal in higher plants. Springer-Verlag. Berlin, BER, Germany. 218 p.

Vander W., S. B. and W. S. Longland. 2004. Diplochory: are two seed dispersers better than one? Trends in Ecology & Evolution 19(3):155-161. Doi: 10.1016/j.tree.2003.12.004.

Varela, S. A. y V. Arana. 2011. Latencia y germinación de semillas. Tratamientos pregerminativos. Cuadernillo Núm. 3. Instituto Nacional de Tecnología Agropecuaria. Bariloche, R, Argentina. 10 p.

Vázquez G., J. A. and T. J. Givnish. 1998. Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. Journal of Ecology 86(6):999-1020. Doi: 10.1046/j.1365-2745.1998.00325.x.

Vázquez Y., C., A. Orozco, M. Rojas, M. E. Sánchez y V. Cervantes. 1997. La reproducción de las plantas: semillas y meristemos. Fondo de Cultura Económica. Tlalpan, D. F., México. 167 p.

Venable, D. L. 1985. The evolutionary ecology of seed heteromorphism. The American Naturalist 126(5):577-595. Doi: 10.1086/284440.

Venable, D. L. and J. S. Brown. 1988. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risks in variable environments. The American Naturalist 131(3):360-384. Doi: 10.1086/284795.

Victoria T., J. A., C. R. Bonilla C. y M. S. Sánchez O. 2006. Viabilidad en tetrazolio de semillas de caléndula y eneldo. Acta Agronómica 55(1):31-41. (12 de mayo de 2022).

Walck, J. L., J. M. Baskin and C. C. Baskin. 1996. Sandstone rockhouses of the Eastern United States, with particular reference to the ecology and evolution of the endemic plant taxa. The Botanical Review 62(4):311-362. Doi: 10.1007/BF02856616.

Wang, B. C. and T. B. Smith. 2002. Closing the seed dispersal loop. Trends in Ecology & Evolution 17(8):379-386. Doi: 10.1016/S0169-5347(02)02541-7.

Went, F. W. and M. Westergaard. 1949. Ecology of desert plants III. Development of plants in Death Valley National Monument, California. Ecology 30:26-38. Doi: 10.2307/1932275.

Wunderle, J. M. 1997. The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands. Forest Ecology and Management 99(1-2):223-235. Doi: 10.1016/S0378-1127(97)00208-9.

Young, L. M. and D. Kelly. 2018. Effects of seed dispersal and microsite features on seedling establishment in New Zealand fleshy-fruited perennial mountain plants. Austral Ecology A Journal of ecology in the Southern Hemisphere 43(7):775-785. Doi: 10.1111/aec.12620.

Zavala-Hurtado, J. A. y P. L. Valverde. 2003. Habitat restriction in Mammillaria pectinifera, a threatened endemic Mexican cactus. Journal of Vegetation Science 14(6):891-898. Doi: 10.1111/j.1654-1103.2003.tb02222.x.




Todos los textos publicados por la Revista Mexicana de Ciencias Forestales sin excepción– se distribuyen amparados bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.