Revista Mexicana de Ciencias Forestales Vol. 12 (68)

Noviembre - Diciembre (2021)

Logotipo, nombre de la empresa

Descripción generada automáticamente

DOI: 10.29298/rmcf.v12i68.1078

Article

Estructura y composición florística de bosques asociados a especies de Theobroma en la Amazonía colombiana

Structure and floristic composition of forests associated to Theobroma species in the Colombian Amazon

Jairo Rojas Molina1*

Pablo Fernando Ramos Calderon2

Mauricio Andrés Castro Zabala2

Allende Pesca Moreno3

Yeraldine Vargas Valenzuela2

Laura Escobar Pachajoa1

Fecha de recepción/Reception date: 12 de febrero de 2021

Fecha de aceptación/Acceptance date: 30 de junio de 2021

_______________________________

1Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA. Colombia.

2Centro de Investigación Nataima, Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA. Colombia.

3Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria–Agrosavia. Colombia.

*Autor para correspondencia; correo-e: jrojas@agrosavia.co

Resumen

Conocer estructuralmente el bosque permite entender la relación natural entre especies nativas y silvestres del género Theobroma; sin embargo, resulta escasa la información sobre el particular en regiones tropicales. El objetivo del presente trabajo fue evaluar la estructura, composición y diversidad de bosques asociados a los taxones silvestres de Theobroma en la Amazonía Colombiana. Se establecieron cinco parcelas circulares de 25.24 m de diámetro (500 m2) en el municipio Cartagena de Chairá departamento del Caquetá y en el municipio Puerto Leguízamo, departamento de Putumayo. Asociados a especies silvestres de Theobroma en la Amazonía Colombiana se registraron 190 individuos, distribuidos en 35 familias, 85 géneros y 123 especies. Las familias con mayor índice de valor de importancia fueron Moraceae (41.04), Fabaceae (37.31), Myristicaceae (34.33), Malvaceae (26.53), Burseraceae (24.67), Lecythidaceae (17.07), Lauraceae (13.47) y Rubiaceae (12.40); en cuanto a las especies destacaron por su IVI Iryanthera laevis, Brosimum cf. potabile, Eschweilera albiflora, Iryanthera crassifolia, Neea parviflora, Theobroma glaucum y Parinari campestri. Los valores de diversidad de Shannon mostraron que los bosques de El Guamo y La Cocha presentan un alto grado de diversidad (3.58 y 3.51, respectivamente). Los índices fitosociológicos y de valor de importancia permitieron identificar cuatro taxones arbóreos sobresalientes: Iryanthera laevis, Brosimum cf. potabile, Eschweilera albiflora e Iryanthera crassifolia; los cuales de alguna manera representan un potencial para la conservación de materiales criollos de cacao.

Palabras clave: Composición florística, distribución diamétrica, estructura, índices de diversidad, índice de valor de importancia (IVI), Theobroma.

Abstract

The objective of this work was to evaluate the structure, composition and biodiversity of forests associated with wild species of Theobroma in the Colombian Amazon. Five circular plots with a diameter of 25.24 m (500 m2) were established in the municipality of Cartagena de Chairá department of Caquetá, and in the municipality of Puerto Leguizamo, department of Putumayo. 190 individuals associated to wild Theobroma species were registered in the Colombian Amazon, distributed in 35 families, 85 genera, and 123 species. The most representative species found were Iryanthera laevis, with 8 individuals; Brosimum cf. potabile, with 7 individuals; Eschweilera albiflora, with 6 individuals; Iryanthera crassifolia, with 5 individuals, and Neea parviflora, Theobroma glaucum and Parinari campestris, with 4 individuals each. Of the 35 families found in the study area, the most representative for their IVI were Moraceae (41,04), Fabaceae (37.31), Myristicaceae (34.33), Malvaceae (26.53), Burseraceae (24.67), Lecythidaceae (17.07), Lauraceae (13.47), and Rubiaceae (12.40). The diversity index of Shannon (H) exhibited the following values for the established plots: Palmichales (3.38), El Jordán (3.16), El Guamo (3.58), Las Vegas (3.34), and La Cocha (3.51). Shannon's diversity values showed that the forests of El Guamo and La Cocha have a high degree of diversity (3.58 and 3.51 respectively). The phytosociological and importance value indices allowed the identification of four outstanding tree species Iryanthera laevis, Brosimum cf. potabile, Eschweilera albiflora and Iryanthera crassifolia, which somehow represent a potential for the conservation of native cocoa materials.

Key words: Floristic composition, diameter distribution, importance value index (IVI), diversity indexes, structure, Theobroma.

Introduction

The Colombian Amazon is considered one of the regions with the greatest biodiversity and endemism in the world (Ter Steege et al., 2013). This species diversity in tropical rainforests is fundamental to their functioning, resilience and ability to provide goods and services (Gómez et al., 2018). However, cattle ranching, illicit crops and illegal logging have caused deforestation at an unprecedented rate in Colombia, which significantly affects plant diversity (Gómez et al., 2018, González-Orozco et al., 2020).

The forests of the Amazon are characterized by their great floristic and faunal richness and for harboring a wide variety of timber and non-timber forest products of immense value (González-Orozco et al., 2020). Information on the floristic structure and composition is an important tool for the evaluation of a forest's potential and the definition of management strategies (Mena et al., 2020). This is obtained through certain parameters such as diversity, frequency, density, dominance, diametric and spatial distribution, which show the development of the forests (Dionisio et al., 2016).

Within this context, it is valuable to know the forest structurally in order to understand the natural relationship of native species with wild species of the Theobroma genus. Currently, there are some biodiversity studies involving different taxa of Theobroma, including Theobroma cacao L. "cultivated species" (Sánchez et al., 2016); Theobroma grandiflorum (Wild. ex Spring) Schum (Peña and Alegre, 2017), and Theobroma subincanum Mart (Vela, 2019). However, in tropical regions, information on the relationships between them (Gómez et al., 2018) and native species of forests, in this case those of the Caquetá and Putumayo regions, is scarce.

The objective of this study was to evaluate the structure, composition and diversity of forests associated with wild Theobroma species in the Colombian Amazon.

Materials and Methods

Study area

The study was carried out in the municipality of Cartagena de Chairá, department of Caquetá, where three sampling plots were established in the lower Caguán area, particularly in the villages of Palmichales, El Jordán and El Guamo. Two more plots were established in the Puerto Leguízamo municipality, department of Putumayo, in Las Vegas and La Cocha (Figure 1). The study areas in Caquetá and Putumayo have an altitude that varies between 181 and 228 m. The vegetation corresponds to a tropical rainforest (TRF) (Holdridge, 2000), which formed a natural secondary forest without thinning, subdivided into the following categories: plateau forest (El Jordán, El Guamo and La Cocha) and plain forest (Palmichales, Las Vegas).

Mapa

Descripción generada automáticamente

Figure 1. Geographical location of the sampling zones in the departments of Caquetá and Putumayo.

In the Caquetá and Putumayo region, the average annual temperature ranges between 24 and 26 °C. The average annual precipitation corresponds to the range of 3 300-3 600 mm; in a monomodal regime, with a period of low precipitation from the beginning of November to mid-February and an increase in rainfall from mid-March to the end of October. Relative humidity in the area varies between 78 and 87 % (González-Orozco et al., 2020).

Sampling methods

The sampling sites were selected by locating species of the genus Theobroma that grow in their natural conditions. These specimens were considered as the central axis for the establishment of five circular plots of 25.24 m in diameter (500 m2), based on the methodology adapted from Barreto et al. (2018). At the sampling sites, all tree individuals with a diameter at breast height (DBH) larger than ≥ 10 cm were inventoried; this diameter was measured with a Forestry Suppliers diameter tape, and total height (m), with a Suunto Pm-5 hypsometer.

Samples of young branches, leaves, flowers, and fruits of the species present in the area were collected (Avendaño-Arrazate et al., 2021). The collected material was identified in the Herbarium of the Natural History Museum of Unidades with the support of the Colombian Amazon Herbarium (COAH) of the Instituto de Investigaciones Amazónicas (Amazonian Research Institute– SINCHI).

Logotipo, nombre de la empresa

Descripción generada automáticamente

Floristic composition and diversity

Based on primary information, the plots were floristically characterized in order to identify composition of the species and analyze their horizontal and vertical structure. The number of individuals was quantified, and the family, genus and species to which they belonged was determined (Cano and Stevenson, 2009).

Horizontal structure

The horizontal structure was analyzed based on the abundance, frequency and dominance discriminated by their absolute and relative values (Mena et al., 2020). Based on these variables, the Importance Value Index (IVI) was calculated as the sum of the parameters expressed as a percentage of abundance, frequency, and relative dominance (Avendaño-Arrazate et al., 2021).

Floristic diversity was determined using Shannon's richness index (H'), the inverse Simpson index (1/D) ―which means that the diversity trend should be interpreted with higher values of the index―, and Margalef's structural index of diversity. The Jaccard similarity index (J) was calculated in order to compare the floristic composition or the similarity between fragments (Magurran, 1988).

Vertical structure

An analysis of the distribution of diameter and height was carried out based on the distribution in diameter and altimetric classes (Manzanilla et al., 2020). Subsequently, the vertical stratification reflecting the distribution of canopies in the vertical profile was analyzed with respect to native cocoa trees, based on the International Union of Forest Research Organizations (IUFRO) methodology; the species present were distributed into three strata: upper stratum, with a total height range greater than or equal to 10 m; middle stratum, with a height of 6 to 10 m, and lower stratum, with less than 6 m in height. Once the stratification was consolidated, the values and phytosociological position were calculated using the formulas shown in Table 1.

Table 1. Phytosociological indicators (Jerez et al., 2011).

Indicator

Formula

Description

Phytosociological value

               (a)

PV = Phytosociological value

n = Number of individuals in the substratum

N = Total number of individuals of all species.

Absolute sociological position of the species

    (b)

ASP = Absolute sociological position of the species

PV = Phytosociological value of the sub-stratum

N = No. of individuals of each species

l = Lower

m = Medium

h = Higher

Percentage sociological position of the species

                   (c)

%SP = Percentage sociological position of the species

ASP = Absolute sociological position of the species

ΣASP = total sum of absolute values

Logotipo, nombre de la empresa

Descripción generada automáticamente

Results and Discussion

Floristic composition

Horizontal structure. 190 individuals, distributed into 35 families, 85 genera and 123 species, were registered in the five sampling plots established in Caquetá and Putumayo. The families with the highest number of taxa were Moraceae, Fabaceae, Myristicaceae, Malvaceae, Burseraceae, Lauraceae and Rubiaceae, which together accounted for 56 % of the total number of inventoried trees (Table 2).

Table 2. Dominant families based on the Importance Value Index (IVI), number of genera, species and individuals in plots in Caquetá and Putumayo, Colombian Amazon.

Family

Genus

Species

Individuals

IVI 300 %

Moraceae

7

10

18

41.04

Fabaceae

6

13

17

37.31

Myristicaceae

5

9

25

34.23

Malvaceae

6

10

15

26.53

Burseraceae

5

9

14

24.67

Lecythidaceae

2

4

12

17.07

Lauraceae

6

9

9

13.47

Rubiaceae

7

8

10

12.40

Urticaceae

4

6

7

11.77

Sapotaceae

3

7

7

11.03

Subtotal

51

85

134

229.52

Remaining families

35

38

56

70.48

Overall total

85

123

190

300

In a similar way to the present research, studies of landscape vegetation in the Colombian Amazon cite Moraceae, Rubiaceae, Burseraceae, Fabaceae and Lauraceae among the families with the largest number of species (Cano and Stevenson, 2009; Meza and Armenteras, 2018). One of the most important families in the tropical forests of the Brazilian Amazon is Fabaceae, which in many cases has the largest number of species; other important families are Lauraceae, Sapotaceae, and Lecythidaceae (Carim et al., 2013). In the Caquetá and Putumayo plots, Fabaceae was the best represented family, with 13 species; it stood out with the highest number of genera (6) and had the second value in ecological importance after the Moraceae family (Table 2).

An analysis of the family IVI by plot showed that Fabaceae stood out among the six most important families for the five plots under study and registered the highest IVI in three of them (P1-Palmichales, P3-El Guamo and P4-Las Vegas). The taxon with the largest number of species belonged to the Inga genus. In the evaluation of the tree composition of taxa associated with Criollo cacao in secondary forests in Mexico and the Amazonian zone of Brazil and Ecuador, Fabaceae has been identified as one of the botanical families with most species (Roa et al., 2009; Veiga et al., 2015; Paredes et al., 2020; Avendaño-Arrazate et al., 2021; Imaña et al., 2021).

Iryanthera laevis Markgr, with eight individuals; Brosimum cf. potabile Ducke, with seven individuals; Eschweilera albiflora (DC.) Miers, with six individuals; Iryanthera crassifolia A.C.Sm., with five individuals, and Neea parviflora Poepp. & Endlicher, Theobroma glaucum H. Karst. and Parinari campestris Aubl., with four individuals each, were the most representative due to their abundance. Iryanthera laevis, Ficus trigona L.F, Brosimum cf. potabile, Theobroma subincanum Mart, and Eschweilera albiflora exhibited the highest importance value (Table 3).

Logotipo, nombre de la empresa

Descripción generada automáticamente

Table 3. Horizontal structure of the main forest stands in plots in Caquetá and Putumayo, Colombian Amazon.

Species

AA

AR

AF

RF

AD

DR

IVI

Iryanthera laevis Markgr.

8.00

4.21

4.00

2.50

0.47

5.89

12.60

Ficus trigona L. F

1.00

0.53

1.00

0.63

0.85

10.57

11.72

Brosimum cf. potabile Ducke

7.00

3.68

3.00

1.88

0.42

5.19

10.75

Theobroma subincanum Mart.

3.00

1.58

3.00

1.88

0.42

5.17

8.63

Eschweilera albiflora (DC.) Miers

6.00

3.16

3.00

1.88

0.28

3.47

8.51

Inga cf. nobilis Willd.

1.00

0.53

1.00

0.63

0.46

5.69

6.85

Iryanthera crassifolia A.C.Sm.

5.00

2.63

4.00

2.50

0.05

0.58

5.71

Inga acreana Harms

2.00

1.05

1.00

0.63

0.32

3.99

5.67

Inga sp.6

1.00

0.53

1.00

0.63

0.33

4.15

5.31

Trattinickia rhoifolia Willd. ex Spreng.

1.00

0.53

1.00

0.63

0.32

4.03

5.19

Neea parviflora Poepp. & Endlicher.

4.00

2.11

3.00

1.88

0.08

0.95

4.93

Theobroma glaucum H. Karst.

4.00

2.11

3.00

1.88

0.06

0.78

4.76

Pseudolmedia laevis (Ruiz & Pav.) J.F Macbr.

2.00

1.05

2.00

1.25

0.18

2.20

4.50

Astrocaryum standleyanum L.H.Bailey

3.00

1.58

3.00

1.88

0.08

0.94

4.39

Parinari campestris Aubl.

4.00

2.11

2.00

1.25

0.08

1.00

4.36

Protium sp.1

2.00

1.05

2.00

1.25

0.16

1.96

4.26

Eschweilera coriacea (DC.) S.A. Mori

2.00

1.05

2.00

1.25

0.15

1.87

4.17

Euterpe precatoria Mart.

3.00

1.58

2.00

1.25

0.08

0.96

3.79

Bursera inversa Daly

2.00

1.05

2.00

1.25

0.11

1.31

3.61

Virola calophylla (Spruce) Warb.

3.00

1.58

2.00

1.25

0.06

0.77

360

Subtotal

63

33.7

45

28.18

4.96

61.47

123.31

Remaining species

126

67

115

72

3

39

177

Overall total

190

100

160

100

8

100

AA = Absolute abundance; AR = Percentage of individuals/Species; AD = Absolute dominance; DR = Basimetric area ratio/Species; AF = Absolute frequency; RF= Relative frequency; IVI= Importance Value Index of the species.

When comparing the species between plots, a difference was observed between the study sites, where the plots P1-Palmichlaes, P2-El Jordán, and P3-El Guamo (Caquetá) shared the species with a higher IVI than those of Brosimum cf. potabile and Iryanthera laevis, which were not representative of P4-Las Vegas or P5-La Cocha, two sites that are part of a different geographic region (Putumayo). In the P3-El Guamo and P5-La Cocha plots, they were recorded among the five species with an IVI above that of Eschweilera albiflora.

Three Theobroma species were identified ―Theobroma subincanum Mart, Theobroma glaucum H. Karst, and Theobroma obovatum Klotzch ex Bernoulli―, with three, four and one individual, respectively; Theobroma subincanum and Theobroma glaucum were common to plots 1 and 5. Theobroma subincanum stood out as one of the top five species with the highest index of importance (8.63) in the study areas. In a research study on the diversity and distribution of wild relatives of cocoa in Colombia, González-Orozco et al. (2020) point out that the variation of microenvironments in the Amazon landscape promotes the presence of certain Theobroma taxa, such as those observed in the present study; this is partly related to the hydrological conditions in the Amazonian rivers as strong drivers of wild Theobroma cacao distribution.

Floristic diversity

The Shannon diversity index (H) for Palmichales was 3.38; for El Jordán, 3.16; for El Guamo, 3.58; for Las Vegas, 3.4, and for La Cocha, 3.51 (Table 4). The evenness analysis was evaluated using the inverse Simpson index (1/D), whose value was 0.97 for Palmichales, 0.95 for El Jordán, 0.97 for El Guamo, 0.96 for Las Vegas, and 0.97 for La Cocha. According to the results, there was high diversity in all the sampled communities, due to the high number of species. As for the Margaleff index, all the plots registered values above 5, which suggests that they are highly diverse forests; those of El Guamo (9.72) and La Cocha (9.34) were outstanding.

Table 4. Comparison of alpha diversity, species richness and diversity between plots in Caquetá and Putumayo, Colombian Amazon.

Palmichales

El Jordán

El Guamo

Las Vegas

La Cocha

Species

30

27

38

30

35

Individuals

32

36

45

39

38

Dominance_D

0.035

0.050

0.030

0.037

0.031

Simpson_1-D

0.964

0.949

0.969

0.962

0.968

Shannon_ H'

3.379

3.160

3.579

3.344

3.514

Menhinick

5.303

4.500

5.665

4.804

5.678

Margalef

8.368

7.255

9.720

7.916

9.347

Evenness_J

0.993

0.958

0.984

0.983

0.988

In the Amazonian tropical forest, Lima et al. (2019) document that the Shannon Diversity Index is (H'=3.57) and the evenness index is (J=0.79); therefore, the studied forest has a good diversity. According to authors like Condé and Tonini (2013) and Carim et al. (2013), the values for the Shannon diversity index are low compared to those registered in tropical forests in other Amazonian regions such as Roraima in Brazil. This is due to the dominance of certain species and to a low floristic similarity at the genus level.

According to Prieto and Arias (2007), the high floristic diversity of the Colombian Amazon is based on the dominance of a few taxonomic groups that make up most of the wealth of species, as evidenced by the analysis of the dominance of families, which showed that 28.5 % of the families represented 69. 1% of the wealth of species.

In the mature forest, high alpha diversity indices were observed; this is characteristic of the upper part of the Amazonian bio-region, where the world's greatest wealth of tree species is registered.

The Jaccard similarity index indicated that the most similar plots were those of Palmichal and El Jordán, as well as Palmichal and El Guamo. While the La Cocha plot showed the greatest dissimilarity compared to the other plots, the Jaccard similarity index indicated that the Palmichal and El Jordán plots were the most similar (Table 5).

Table 5. Jaccard index for the five plots established in Caquetá and Putumayo, Colombian Amazon.

Similarity

Jaccard index

Palmichal and El Jordán

0.140

Palmichal and El Guamo

0.133

Palmichal and Las Vegas

0.053

Palmichal and La Cocha

0.121

El Jordán and El Guamo

0.121

El Jordán and Las Vegas

0.018

El Jordán and La Cocha

0.107

El Guamo and Las Vegas

0.046

El Guamo and La Cocha

0.090

Las Vegas and La Cocha

0.016

The plots with the highest Jaccard index were those that shared the geographical area of El Cartagena de Chairá in Caquetá. On the other hand, the lowest rates were obtained in Las Vegas and La Cocha; although these are part of the same geographical area (Putumayo), they belong to two different forest types: Plain Forest and Plateau Forest, respectively. Another low index was recorded in El Jordán and Las Vegas, two plots that differ both in geographic location and forest type. These behaviors are associated with agro-climatological and geological conditions such as relief, climate and soil changes, among others, which have an influence on the behavior of the vegetation, since they influence the development of high levels of species and habitat richness, associated with high biodiversity estimates for the Amazonian Forest region (Cárdenas, 2014; Andrade et al., 2017).

Vertical structure

Diameter distribution. In the Caquetá and Putumayo plots, the histogram of diameter distribution showed that individuals predominate in the first three diameter classes, representing 86 % of the total. It was determined that the species with the highest diametric class were Ficus trigona L.F, Inga cf. nobilis Willd, Trattinickia rhoifolia Willd. ex Spreng, and Iryanthera laevis (Figure 2).

Figure 2. Diametric classification of individuals in plots in Caquetá and Putumayo, Colombian Amazon.

The behavior observed in the diameter distribution is similar to that cited by Paredes et al. (2020) in a tropical forest in Ecuador, where the secondary forest structure was observed to be largely represented by small-stemmed trees and tended to accumulate fast-growing woody plant species (pioneer species). The first diameter classes included the largest number of individuals, which denotes a dynamic of mortality and recruitment that is important for regeneration within the forest, since the species present in the lower diameter classes are part of a process of taxon turnover that originates other successional stages, evidencing a sustained balance between individuals that die and those that grow (Rodríguez and Brenes, 2009; Veiga et al., 2015).

Altimetric distribution. In Caquetá and Putumayo, the individuals were distributed into six altitudinal classes; 60 % of the individuals (115) were concentrated in the middle stratum, with heights of less than 15 m (Figure 3).

Figure 3. Altimetric classification of individuals in plots in Caquetá and Putumayo, Colombian Amazon.

The altimetric distribution coincides with the behavior for the Amazonian region reported by other authors. Lima et al. (2019) point out that in a dense shade forest in the eastern Amazon, 69 and 57 % of the species occurred in the middle stratum, with heights varying from 13.5 to 23.5 m. Dionisio et al. (2016) in a dense forest in the state of Roraima recorded 70.29 % of individuals in the middle stratum; Condé and Tonini (2013) in a forest of the same state obtained similar percentages of about 71.3 % in the middle stratum. In Rondonia’s forests, Andrade et al. (2017) cite a distribution of individuals with heights of less than 20 m that is characteristic of young forests and which guarantees the continuity of species within the forest structure.

In the assessment of the phytosociological position of the species present in the Caquetá and Putumayo plots, the following stood out as the most important: Iryanthera laevis (4.420), Brosimum cf. potabile (4.180), Eschweilera albiflora (3.523), Iryanthera crassifolia (2.867), Parinari campestris (1.794), and Theobroma glaucum (1.794) (Table 6). Most of the trees of the wild Theobroma taxa in the Caquetá and Putumayo plots of the Colombian Amazon were located in the upper stratum, with heights between 13 and 25 m.

Table 6. Phytosociological position of the main species in plots in Caquetá and Putumayo, Colombian Amazon.

Species

Lower SP

Medium SP

Higher SP

ASP

% SP

Iryanthera laevis Markgr.

0.000

0.516

4.232

4.747

4.420

Brosimum cf. potabile Ducke

0.000

0.258

4.22

4.489

4.180

Eschweilera albiflora (DC.) Miers

0.000

0.258

3.526

3.784

3.523

Iryanthera crassifolia A.C.Sm.

0.000

0.258

2.821

3.079

2.867

Parinari campestris Aubl.

0.000

0.516

1.411

1.926

1.794

Theobroma glaucum H. Karst.

0.000

0.516

1.411

1.926

1.794

Neea parviflora Poepp. & Endlicher.

0.037

0.258

1.411

1.705

1.588

Euterpe precatoria Mart.

0.000

0.258

1.411

1.668

1.553

Lacistema nena J.F.Macbr.

0.000

0.258

1.411

1.668

1.553

Theobroma subincanum Mart.

0.000

0.258

1.411

1.668

1.553

Virola calophylla (Spruce) Warb.

0.000

0.258

1.411

1.668

1.553

Virola elongata (Benth.) Warb

0.000

0.258

1.411

1.668

1.553

Anaxagorea brevipes Benth.

0.000

0.000

1.411

1.411

1.313

Bocageopsis multiflora (Mart.) R.E.Fr.

0.000

0.000

1.411

1.411

1.313

Coussapoa orthoneura Standl.

0.000

0.000

1.411

1.411

1.313

Dialium guianense (Aubl.) Sandwith

0.000

0.000

1.411

1.411

1.313

Eschweilera coriacea (DC.) S.A. Mori

0.000

0.000

1.411

1.411

1.313

Inga acreana Harms

0.000

0.000

1.411

1.411

1.313

Inga japurensis T.D.Penn

0.000

0.000

1.411

1.411

1.313

Maquira coriacea (H.Karst.) C.C Berg

0.000

0.000

1.411

1.411

1.313

Subtotal

0.04

3.87

37.39

41.28

38.44

Remaining species

0.22

8.77

57.11

66.10

61.58

Overall total

0.26

12.64

94.49

107.39

100.01

The phytosociological and importance value indices allowed the identification of five outstanding tree species: Iryanthera laevis, Brosimum cf. potabile, Eschweilera albiflora and Iryanthera crassifolia, which represent a potential for the conservation of wild cocoa materials (Theobroma sp). According to Avendaño-Arrazate et al. (2018), Criollo cocoa is a genetic resource that has been preserved for many years in environments that are totally isolated from commercial populations, where it develops in coexistence with different species typical of the jungle, in this case the Amazon; studies on the tree composition and structure under natural conditions would favor the issuance of criteria on their habitat and diversity, and the identification of associated forest taxa of importance in their environment. This would contribute to the promotion of its conservation, as well as to know tree species with potential for being implemented as shade in productive systems (Avendaño-Arrazate et al., 2021).

Conclusions

In forests associated to Theobroma in the Colombian Amazon the most important canopy families are Moraceae, Fabaceae, Myristicaceae, Malvaceae, and Burseraceae; Iryanthera laevis stands out for its ecological importance and phytosociological position.

Shannon diversity values vary between 3.16 and 3.58; this shows a high degree of diversity and is related to the Jaccard index, which indicates low similarity between plots, possibly due to geographic differences and to differences in forest types.

Three Theobroma species were identified, from which Theobroma subincanum stands out for its ecological importance (IVI 8.63), and Theobroma glaucum, for its phytosociological position (%SP 1.794).

Acknowledgements

The aauthors thank the Departamento Administrativo de Ciencia, Innovación de Colombia (COLCIENCIAS) for funding the Project “Expedición Cacao Colombia Bio” under the special cooperation agreement Number FP44842-142-2018 which made it possible to obtain the data of this publication. Also, to the Corporación Colombiana de Investigación Agropecuaria (Agrosavia) and to the Universidad de los Andes for their support in the development of this research study. We also thank Biologist Angela Sánchez Galán for helping us with the identification and classification of the species and the communities of Caquetá and Putumayo for their contribution in this work.

Conflict of interests

The authors declare no conflict of interests.

Contribution by author

Jairo Rojas Molina and Pablo Fernando Ramos: design of the study definition of methodology, data analysis, field data collection and writing of the manuscript; Mauricio Andrés Castro, Allende Pesca Moreno, Yeraldine Vargas and Laura Escobar: data analysis, writing, review and correction of the manuscript.

Logotipo, nombre de la empresa

Descripción generada automáticamente

References

Andrade, R. T. G., S. Pansini, A.F. Sampaio, M. S. Ribeiro, G. S. Cabral e A. G. Manzatto. 2017. Fitossociologia de uma floresta de terra firme na amazônia sul-ocidental, Rondônia, Brasil. Biota Amazônia, Macapá-ap 7(2): 36-43. Doi: http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v7n2p36-43.

Avendaño-Arrazate, C. H., M. Martínez-Bolaños and A. Mendoza-López. 2018. The Cocoa (Theobroma cacao L.) native in México. Biodiversity International Journal 2(6): 535-536. Doi:https://doi.org/10.15406/bij.2018.02.00109.

Avendaño-Arrazate, C. H., G. M. Suárez-Venero, A. Mendoza-López, M. Martínez-Bolaños, J. Reyes-Reyes y S. Espinosa-Zaragoza. 2021. Composición arbórea de especies asociadas al cacao: selva Lacandona y sistemas agroforestales, Chiapas, México. Agronomía Mesoamericana 32(2): 365-381. Doi: 10.15517/am.v32i2.41630.

Barreto S., J. S., S. Ramírez E., M. A. Peña, C. Capachero, A. P. Barbosa, M. Panev, J. F. Phillips y L. M. Moreno. 2018. Manual de Campo Inventario Forestal Nacional Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales–IDEAM. Ministerio de Ambiente y Desarrollo Sostenible. Bogotá, Colombia. 160 p.

Cano, A. y P. R. Stevenson. 2009. Diversidad y composición florística de tres tipos de bosque en la estación biológica Caparú, Vaupés. Colombia Forestal 12: 63-80. Doi:https://doi.org/10.14483/udistrital.jour.colomb.for.2009.1.a06.

Cárdenas, M. A. 2014. Estudio comparativo de la composición florística, estructura y diversidad de fustales en dos ecosistemas del campo de producción 50k cpo-09, Llanos del Orinoco Colombiano. Colombia forestal 17(2): 203-229. Doi:https://doi.org/10.14483/udistrital.jour.colomb.for.2014.2.a06.

Carim, M. J. V., J. L. B. Guillaumet, J. R. S. e L. C. L. Guimarães. 2013. Composição e estrutura de floresta ombrófila densa do extremo norte do Estado do Amapá, Brasil. Biota Amazônia, Macapá-AP 3(2):1-10. Doi:http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v3n2p1-10.

Condé, T. M. e H. Tonini. 2013. Fitossociologia de uma Floresta Ombrófila Densa na Amazônia Setentrional, Roraima, Brasil. Acta Amazónica 43(3): 247–260. Doi:https://doi.org/10.1590/S0044-59672013000300002.

Dionisio, L. F. S., O. S. Bonfim filho, B. R. S. Crivelli., J. P. Gomes., M. H. S. Oliveira, e J. O. P. Carvalho. 2016. Importância fitossociológica de um fragmento de floresta ombrófila densa no Estado de Roraima, Brasil. Revista Agro@mbiente on-line 10 (3): 243-252. Doi: http://dx.doi.org/10.18227/1982-8470ragro.v10i3.3381.

Gómez C., E., G. X. Rousseau, D. Celentano, H. Fariñas S., y C. Gehring. 2018. Efecto de la riqueza de especies y la estructura de la vegetación en el almacenamiento de carbono en sistemas agroforestales en la Amazonía sur de Bolivia. Revista de Biología Tropical 66(4): 1481-1495. Doi: https://doi.org/10.15517/rbt.v66i4.32489.

González-Orozco, C. E., A. A. Sánchez G., P. E. Ramos and R. Yockteng. 2020. Exploring the diversity and distribution of crop wild relatives of cacao (Theobroma cacao L.) in Colombia. Genetic Resources and Crop Evolution 67:2071-2085. Doi:https://doi.org/10.1007/s10722-020-00960-1.

Holdridge, L. 2000. Ecología basada en zonas de vida. 5a edición. Instituto Interamericano de Cooperación para la Agricultura. San José, Costa Rica. 216 p.

Imaña, J., G. Riesco., O. Antunes., y R. De Camino. 2021. Análisis silvicultural del bosque tropical atlántico a partir de la distribución diamétrica y riqueza florística del arbolado. Revista Forestal Mesoamericana Kurú 18 (42): 46-54. Doi: 10.18845/rfmk.v16i42.5538.

Jerez, M., A. Quevedo, A.Y. Moret, M. Plonczak, V. Garay, L. Vincent, J. D. Silva y L. E. Rodríguez. 2011. Regeneración natural inducida y plantaciones forestales con especies nativas:  potencial y limitaciones para la recuperación de bosques tropicales degradados en los llanos occidentales de Venezuela.  In: Herrera, F. e I. Herrera (eds.). La Restauración Ecológica en Venezuela: Fundamentos y Experiencias. Ediciones IVIC. Caracas, Venezuela. pp. 35-60.

Lima, R. V., B. M., Silva, E. D. Sotta, P. Couteron, P. S. Aparicio, V. F. Dos Santos, R. L. Bueno, Y. K. Dos Santos e B. B. Ramos. 2019. Análise fitossociológica de um trecho de floresta ombrófila densa na Amazônia Oriental. Revista Arquivos Científicos (IMMES) 2 (2): 89-100. Doi: 10.5935 / 2595-4407 / rac.immes.v2n2p89-100.

Magurran, A. E. 1988. Ecological diversity and its measurement. Princeton University Press. New Jersey, NJ, USA. 179 p.

Manzanilla, G. E., J. M. Mata, E. J. Treviño, O. A. Aguirre, E. A. Rodríguez y J. I. Yerena. 2020. Diversidad, estructura y composición florística de bosques templados del sur de Nuevo León. Revista Mexicana de Ciencias Forestales 11 (61). Doi:https://doi.org/10.29298/rmcf.v11i61.703.

Mena, V. E., H. J. Andrade y J. J. Torres. 2020. Composición florística, estructura y diversidad del bosque pluvial tropical de la subcuenca del río Munguidó, Quibdó, Chocó, Colombia. Entramado 16 (1):204-215. Doi:https://dx.doi.org/10.18041/1900-3803/entramado.1.6109.

Meza-Elizalde, M. C. y D. Armenteras. 2018. Uso del suelo y estructura de la vegetación en paisajes fragmentados en la amazonia, Colombia. Colombia Forestal 21(2): 205-223. Doi: 10.14483/2256201X.12330.

Paredes, C.O., J. Ferro., y P. Lozano. 2020. Estructura arbórea en el bosque secundario de la Estación Biológica Pindo Mirador, Pastaza, Ecuador. Arnaldoa 27(2): 535-552. Doi: https://dx.doi.org/10.22497/arnaldoa.272.27206.

Peña, J. y J. C. Alegre. 2017. Tipificación de prototipos de sistemas de producción agroforestal en la provincia de Tambopata, Madre de Dios. Aporte Santiaguino 10(2): 233. Doi: https://doi.org/10.32911/as.2017.v10.n2.166.

Prieto, A. y J. C. Arias. 2007. Diversidad biológica del sur de la Amazonia colombiana. In: Ruiz, S. L., E. Sánchez, E. Tabares, A. Prieto, J. C. Arias, R. Gómez, D. Castellanos, P. García y L. Rodríguez (Eds.). Diversidad biológica y cultural del sur de la Amazonia colombiana–Diagnóstico. Corpoamazonía, Instituto Humboldt, Instituto Sinchi, UAESPNN. Bogotá, Colombia. pp. 73-197.

Roa H. A., M.G. Salgado., y H.J. Álvarez. 2009. Análisis de la estructura arbórea del sistema agroforestal de cacao (Theobroma cacao L.) en el Soconusco, Chiapas – México. Acta Biológica Colombiana 14(3): 97-110. http://www.scielo.org.co/pdf/abc/v14n3/v14n3a7.pdf (19 de agosto de 2020).

Rodríguez A., C. y L. Brenes C. 2009. Estructura y Composición de dos Remanentes de Bosque Premontano Muy Húmedo en la Reserva Madre Verde, Palmares, Costa Rica. Revista Pensamiento Actual 9 (12-13): 115-124.

Sánchez, F., J. Pérez, J. J. Obrador, Á. Sol y O. Ruiz. 2016. Árboles maderables en el sistema agroforestal de cacao en Cárdenas, Tabasco, México. Revista Mexicana de Ciencias Agrícolas 14: 2711-2723. Doi:https://doi.org/10.29312/remexca.v0i14.440.

Ter Steege, H., N. C. A. Pitman., D. Sabatier, C. Baraloto, R. P. Salomão, J. E. Guevara, O. L. Phillips., C. V. Castilho, W. E. Magnusson, J. F. Molino, A. Monteagudo, P. N. Vargas, J. C. Montero, T. R. Feldpausch, E. N. H. Coronado, T. J. Killeen, B. Mostacedo, R. Vasquez, R. L. Assis and M. R. Silman. 2013. Hyperdominance in the Amazonian tree flora. Science 342(6156). Doi:https://doi.org/10.1126/science.1243092.

Veiga, M., J. R. Da Silva, L. T. Luciedi de Cássia, L. R. Takiyama and F. Wittmann. 2015. Composition, structure, and floristic diversity in dense rain forest in the Eastern Amazon, Amapá, Brazil. Acta Scientiarum. Biological Sciences 37(4): 419-426. Doi:10.4025/actascibiolsci.v37i4.27536.

Vela, F. 2019. Composición florística y estructura de bosque reservado de la universidad nacional agraria de la selva, en parcela permanente de medición, Tingo María-Perú. Tesis de maestría. Universidad Nacional Agraria de la selva, Perú. 105 p. http://repositorio.unas.edu.pe/bitstream/handle/UNAS/1658/TS_VPF_2019.pdf?sequence=1&isAllowed=y (28 de agosto de 2020).

        

Todos los textos publicados por la Revista Mexicana de Ciencias Forestales sin excepción– se distribuyen amparados bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.