Estimación del crecimiento de dos especies de Pinus de la Región Centro de Guerrero, México

Autores/as

  • Francisco Javier Hernández División de Estudios de Posgrado e Investigación, Instituto Tecnológico de El Salto http://orcid.org/0000-0003-0480-624X
  • Brenda Mireya Bretado Medrano
  • Ezequiel Márquez Bernal
  • Juan Abel Nájera Luna Tecnologico Nacional de México/Instituto Tecnológico de El Salto
  • Benedicto Vargas Larreta Tecnológico Nacional de México/Instituto Tecnológico de El Salto

DOI:

https://doi.org/10.29298/rmcf.v12i68.898

Palabras clave:

Palabras Clave: crecimiento en altura, crecimiento en área basal, crecimiento en diámetro, crecimiento en volumen, Chapman-Richard, Schumacher, Altura, área, basal, crecimiento, en, diámetro, modelos, de, Pinus, volumen, fustal, Total

Resumen

Resumen

La aplicación de modelos de crecimiento para árboles individuales en bosques mezclados permite realizar estimaciones a nivel de la unidad de manejo. El objetivo del presente estudio fue evaluar los modelos de crecimiento en diámetro normal, área basal, altura total y volumen fustal de Chapman-Richards, Schumacher, Hossfeld I y Weibull para árboles individuales de Pinus pseudostrobus y Pinus oocarpa de Guerrero, México. Mediante muestreo selectivo se recolectaron 27 árboles dominantes y 28 codominantes para reconstruir los perfiles de árboles ordenados en grupos de diez años, por medio de la técnica de análisis troncales. La selección de los mejores modelos para cada variable se realizó con base en el coeficiente de determinación ajustado, la raíz del error medio cuadrático, las propiedades de los parámetros y las tendencias lógicas de crecimiento. Los resultados indican que el modelo de Schumacher fue el mejor para estimar el crecimiento en diámetro normal y la altura en ambas especies, así como el área basal de Pinus pseudostrobus y el volumen de Pinus oocarpa; mientras que, el modelo de Chapman-Richards fue el mejor para estimar el área basal de Pinus oocarpa y el volumen para Pinus pseudostrobus. Las edades estimadas del turno para volumen en Pinus oocarpa fueron de 62 años y para Pinus pseudostrobus de 82 años.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Francisco Javier Hernández, División de Estudios de Posgrado e Investigación, Instituto Tecnológico de El Salto

Egresado del Instituto Tecnologico de El Salto (Antes: Insituto Tecnológico Forestal No. 1) como Ingeniero en Desarrollo Forestal

Departamento Forestal de la Universidad de Texas A&M como Maestro en Ciencias en el área de Silvicultura

Departamento de Ciencias de las Plantas de la Universidad Estatal de Oklahoma como Doctor en Filosofía en el área de Ecología

Trabajo actual: Profesor Titular del Instituto Tecnológico de El Salto

Areas de estudio e investigación: Manejo Forestal, Biometría Forestal, Silvicultura y Ecología Forestal

Brenda Mireya Bretado Medrano

Ingeniera Forestal Egresada del Insituto Tecnologico de El Salto

 

Ezequiel Márquez Bernal

Ingeniero Forestal egresado del Instituto Tecnológico de El Salto

Juan Abel Nájera Luna, Tecnologico Nacional de México/Instituto Tecnológico de El Salto

Doctor en Ciencias egresado de la Facultad de Ciencias Forestales de la UANL

Benedicto Vargas Larreta, Tecnológico Nacional de México/Instituto Tecnológico de El Salto

Doctor en Ciencias 

Citas

Alder D., E. 1980. Estimación del volumen forestal y predicción del rendimiento, con referencia especial a los trópicos. Roma, Italia: FAO. 80 p. http://www.fao.org/3/a-ap354s.pdf (12 de agosto de 2020).

Arteaga M., B. 2000. Evaluación dasométrica de plantaciones de cuatro especies de pino en Ayotoxtla, Guerrero. Revista Chapingo, Serie Ciencias Forestales y del Ambiente 6(2): 151-157. https://chapingo-cori.mx/revistas/articulos/doc/rchscfaVI335.pdf (4 de agosto de 2020).

Briseño R., J., J. J. Corral R., R. Solis M., J. R. Padilla M., D. J. Vega N., P. M. López S., B. Vargas L., U. Diéguez A., G. Quiñonez B. and C. A. López S. 2020. Individual tree diameter and height growth models for 30 tree species in mixed-species and uneven-aged forest of Mexico. Forest 11(4): 1-429. Doi: 10.3390/f11040429.

Carmean, W. H. 1972. Site index curves for upland oaks in Central States. Forest Science 18: 109-120. Doi: 10.1093/forestscience/18.2.109.

Clutter, J. L., J. C. Fortson, L. V. Piennar, G. H. Brister and R. L. Bailey. 1983. Timber management: A quantitative approach. John Wiley & Sons, Inc. New York, NY, USA. 333 p.

Comisión Nacional Forestal (Conafor). 2015. Caracterización y estrategías de desarrollo industrial de la Cuenca de Abasto “Centro Sur” del estado de Guerrero. Comisión Nacional Forestal, México. 166 p. https://www.gob.mx/cms/uploads/attachment/file/506494/Estudio_de_cuenca_de_abasto_Centro-Sur_Guerrero.pdf (11 de febrero de 2021).

Corral R., S. y J. de J. Návar C. 2005. Análisis de crecimiento e incremento de cinco pináceas de los bosques de Durango, México. Madera y Bosques. 11(1): 29-47. Doi:10.21829/myb.2005.1111260. DOI: https://doi.org/10.21829/myb.2005.1111260

De Almeida S., M., M. R. Hernández V., J. M. Brazāo P., J. G. Escobar F., C. A. López S., J. C. Hernández D. and C. Wehenkel. 2019. Sistema dinámico de crecimiento diamétrico para cinco especies de pinos en Durango, México. Revista Mexicana de Agroecosistemas 6(2): 145-156. https://www.voaxaca.tecnm.mx/revista/docs/RMAE%20vol%206_2_2019/02-RMAE_2019-22-Pinos-ToEdit.pdf (14 de septiembre de 2020).

Diéguez A., U., A. Rojo A., F. Castelo D., J. G. Álvarez G., M. Barrio A., F. Crecente C., J. M. González G., C. Pérez C., R. Rodríguez S., C. A. López S., M. A. Balboa M., J. J. Gorgoso V. y F. Sánchez R. 2009. Herramientas selvícolas para la gestión forestal sostenible de Galicia. Unidad de Gestión Forestal Sostenible (UXFS). Escuela Politécnica Superior, Universidad de Santiago de Compostela. Xunta de Galicia, España. 259 p. https://mediorural.xunta.gal/sites/default/files/publicacions/2019-10/herramientas_selvicolas.pdf (13 de septiembre de 2020).

Fien E., K. P., S. Fravera, A. Teets, A. R. Weiskittel and D. Y. Hollinger. 2019. Drivers of individual tree growth and mortality in an uneven-aged, mixed-species conifer forest. Forest Ecology and Management 499: 1-40. Doi: 10.1016/j.foreco.2019.06.043.

García, E. 2004. Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía, Universidad Nacional Autónoma de México. 5ª Edición. México, D.F., México. México. 90 p.

González M., M., F. Cruz C., G. Quiñonez B., B. Vargas L. y J. A. Nájera L. 2016. Modelo de crecimiento en altura dominante para Pinus pseudostrobus Lindl. en el estado de Guerrero. Revista Mexicana de Ciencias Forestales 7(37): 7-20. Doi:10.29298/rmcf.v7i37.48. DOI: https://doi.org/10.29298/rmcf.v7i37.48

Hernández C., M., W. Santiago G., H. M. de los Santos P., P. Martínez A. y F. Ruíz A. 2018. Modelos de crecimiento en altura dominante e índices de sitio para Pinus ayacahuite Ehren. Agrociencia 52(3): 437-452. https://agrociencia-colpos.mx/index.php/agrociencia/article/view/1680 (11 de febrero de 2011).

Hernández, F. J., J. C. Meráz A., B. Vargas L. y J. A. Nájera L. 2020. Diameter, height, basal area and volume growth of three pine species from Chihuahua, Mexico. Revista Mexicana de Ciencias Forestales 11(60): 120-143. Doi: 10.29298/rmcf.v11i60.711. DOI: https://doi.org/10.29298/rmcf.v11i60.711

Imaña E., J. y B. Encinas O. 2008. Epidometría Forestal. Brasilia: Universidade de Brasilia, Departamento de Engenharia Forestal Mérida; Universidad de Los Andes, Facultad de Ciencias Forestales. Brasilia, Brasil. 66 p. http://www.monografias.com/trabajos-pdf2/epidometria-forestal/epidometria-forestal.pdf (13 de septiembre de 2020).

Instituto Nacional de Estadística, Geografía e Informatica (Inegi). 2016. Anuario estadístico y geográfico de Guerrero 2016. Instituto Nacional de Estadística Geografía e Información. Toluca, Estado de México, México. 1-34. http://www.diputados.gob.mx/sedia/biblio/usieg/mapas2016/gro_mapas.pdf (13 de septiembre de 2020).

Kiviste, A., J. G. Álvarez, G., A. Rojo A. y A. D. Ruíz G. 2002. Funciones de crecimiento de aplicación en el ámbito forestal. Monografía INIA Forestal Núm. 4. Ministerio de Ciencia y Tecnología. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Madrid, España. 190 p.

Klepac, D. 1983. Incremento de árboles y masas forestales. Universidad Autónoma de Chapingo. Chapingo. Edo. de México, México. 279 p.

Martínez S., M., S. Madrigal H., I. Vázquez C., E. Velazco B., C. R. Morales N. y F. Villarreal G. 2014. Efecto de Arceuthobium vaginatum (Willd.) Presl. subsp. vaginatum en Pinus hartwegii Lindl. en Colima. Revista Mexicana de Ciencias Forestales 6(29): 44-55. Doi: 10.29298/rmcf.v6i29.215. DOI: https://doi.org/10.29298/rmcf.v6i29.215

McCullagh, A., K. Black and M. Nieuwenhuis. 2017. Evaluation of tree and stand-level growth models using national forest inventory data. European Journal Forest Research 136(2): 1-9. Doi: 10.1007/s10342-017-1025-8. DOI: https://doi.org/10.1007/s10342-017-1025-8

Monárrez G., J. C. y H. Ramírez M. (2003). Predicción del rendimiento en masas de densidad excesiva de Pinus durangensis Mtz. Revista Chapingo Serie de Ciencias Forestales y del Ambiente, 9(1): 45-56. https://biblat.unam.mx/es/revista/revista-chapingo-serie-ciencias-forestales-y-del-ambiente/21 (13 de septiembre de 2020).

Newberry, J. D. 1991. A note on Carmean´s estimate of height from stem analysis data. Forest Science 37(1): 368-369. Doi:10.1093/forestscience/37.1.368.

Novák, J., D. Dušek, M. Slodičák and D. Kacálek. 2017. Importance of the first thinning in young mixed Norway spruce and European beech stands. Journal of Forest Science 63(6): 254-262. Doi: 10.17221/5/2017-JFS. DOI: https://doi.org/10.17221/5/2017-JFS

Pacheco A., G., W. Santiago J., D. Martínez S. y R. Ortíz B. 2016. Análisis del crecimiento e incremento y estimación de índice de sitio para P. montezumae Lamb. en Santiago Textitlán, Sola Vega, Oaxaca. Foresta Veracruzana 18(2): 21-28. https://www.redalyc.org/articulo.oa?id=49748829003 (11 de febrero de 2021).

Quiñonez B., G., H. M. de los Santos P. y J. G. Álvarez G. 2015. Crecimiento en diámetro para Pinus en Durango. Revista Mexicana de Ciencias Forestales 6(29): 108-125. doi:10.29298/rmcf.v6i29.220. DOI: https://doi.org/10.29298/rmcf.v6i29.220

Quiñonez B., G., G. G. García E. y O. A. Aguirre C. 2018. ¿Cómo corregir heterocedasticidad y autocorrelación de residuales en modelos de ahusamiento y crecimiento en altura? Revista Mexicana de Ciencias Forestales 9(49): 28-59. Doi:10.29298/rmcf.v9i49.151. DOI: https://doi.org/10.29298/rmcf.v9i49.151

Salas C., T. G. Gregoire, D. J. Craven y H. Gilabert. 2016. Modelación del crecimiento: estado de arte. Bosque 37(1): 3-12: Doi: 10.4067/S0717-92002016000100001. DOI: https://doi.org/10.4067/S0717-92002016000100001

Santiago-García, W., H. M. de los Santos-Posadas, G. Ángeles-Pérez, J. R. Valdez-Lazalde y G. Ramírez-Valverde. 2013. Sistema compatible de crecimiento y rendimiento para rodales coetáneos de Pinus patula. Revista Fitotecnia Mexicana 36(2):163-172. https://www.revistafitotecniamexicana.org/documentos/36-2/8a.pdf (26 de enero de 2021).

Sharma, R. P., A. Brunner, T. Eid and B. H. Øyen. 2011. Modelling dominant height growth from national forest inventory individual tree data with short time series and large age errors. Forest Ecology and Management 262(12): 2162–2175. Doi:10.1016/j.foreco.2011.07.037. DOI: https://doi.org/10.1016/j.foreco.2011.07.037

Statistical Analysis System (SAS). 2002. SAS/ETS User´s Guide Version 8. SAS Institute Inc. Cary, NC. USA. n/p.

Torres R., J. M. y O. S. Magaña T. 2001. Evaluación de plantaciones forestales. CIDE, Limusa, Noriega Editores. México, D. F., México. 472 p.

Vanclay, J. K. 1994. Modelling forest growth and yield: applications to mixed tropical forest. CAB International, Wallingford, UK. 312. file:///Users/franciscojavier/Downloads/Modelling_forest_growth_and_yield_Applic.pdf (15 de septiembre de 2020).

Vanclay, J. K. and J. P. Skovsgaard. 1997. Evaluating forest growth models. Ecological Modelling 98: 1-12. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.186.589&rep=rep1&type=pdf (15 de septiembre de 2020). DOI: https://doi.org/10.1016/S0304-3800(96)01932-1

Vargas-Larreta, B., O. A. Aguirre-Calderón, J. J. Corral-Rivas, F. Crecente-Campos and U. Diéguez-Aranda. 2013. A dominant height growth and site index model for P. pseudostrobus Lindl. in Northeastern Mexico. Agrociencia 47: 91-106. https://agrociencia-colpos.mx/index.php/agrociencia/article/view/1004/1004 (15 de septiembre de 2020).

Zimmerman, D. L., V. Núñez A., T. G. Gregoire, O. Schabenberger, J. D. Hart, M. G. Kenward, G. Molenberghs, G. Verbeke, M. Pourahmadi and P. Vieu. 2001. Parametric modelling of growth curve data: An overview. Test 10(1): 1-73. Doi:10.1007/BF02595823. DOI: https://doi.org/10.1007/BF02595823

Modelos de Schumacher y Chapman-Richards

Publicado

05-11-2021

Cómo citar

Hernández, Francisco Javier, Brenda Mireya Bretado Medrano, Ezequiel Márquez Bernal, Juan Abel Nájera Luna, y Benedicto Vargas Larreta. 2021. «Estimación Del Crecimiento De Dos Especies De Pinus De La Región Centro De Guerrero, México». Revista Mexicana De Ciencias Forestales 12 (68). México, ME:31-57. https://doi.org/10.29298/rmcf.v12i68.898.

Número

Sección

Artículo Científico