Soil seed bank under isolated trees of the Tamaulipan Thorny Scrub

Authors

  • Renata Aide Valdes Alameda Universidad Autónoma de Nuevo León
  • Enrique Jurado Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León, Carretera Linares – Cd. Victoria Km. 145, C.P. 67700, Linares, N.L., México.
  • Joel Flores IPICYT-División de Ciencias Ambientales, Camino a la Presa San José No. 2055, Colonia Lomas 4a Sección, C.P. 78216, San Luis Potosí, S.L.P., México.
  • Eduardo Estrada Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León, Carretera Linares – Cd. Victoria Km. 145, C.P. 67700, Linares, N.L., México.

DOI:

https://doi.org/10.29298/rmcf.v14i79.1344

Keywords:

Acacia farnesiana (L.) Willd, Prosopis laevigata (Humb. & Bonpl. ex Willd.) M.C. Johnst, dispersal syndrome, recruitment, zoochory

Abstract

Studying the seed bank makes it possible to interpret the status of disturbed sites, the response to disturbance-driven changes, and the subsequent dynamics of a plant community. Heterogeneity in seed bank formation is influenced by seed dormancy, seed dispersal type, and such landscape components as topography or vegetation. The number of seeds in the soil depends, in part, on the vegetation present, however, in deforested and fragmented landscapes, isolated trees are the only potential reservoirs for vegetation regeneration. In this work, the spatial and temporal variation in abundance, density, and number of germinable seed species on the ground was explored during two years, under five common isolated tree species in open areas of the Tamaulipan Thorny Scrub. Seed bank characteristics were calculated for each isolated tree species and compared between species, seasons, and years of collection. The seed bank under the canopy of two zoochorous trees (Neltuma laevigata and Diospyros texana) was richer and denser than under the other three species (Yucca filifera, zoochorous; Parkinsonia aculeata and Vachellia farnesiana, unassisted dispersal). Also, more species and seeds germinated in Fall than in Spring, and more herbaceous than arboreal species were recorded.

Downloads

Download data is not yet available.

References

Baiges, J. C., X. Espadaler and C. Blanché. 1991. Seed dispersal in W Mediterranean Euphorbia species. Botanika Chronika 10:697-705. https://www.researchgate.net/publication/257933870_Seed_dispersal_in_West_Mediterranean_Euphorbia_L. (31 de julio de 2023).

Baskin, J. M. and C. C. Baskin. 2004. A classification system for seed dormancy. Seed Science Research 14(1):1-16. Doi: 10.1079/SSR2003150. DOI: https://doi.org/10.1079/SSR2003150

Bossuyt, B. and O. Honnay. 2008. Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. Journal of Vegetation Science 19(6):875-884. Doi: 10.3170/2008-8-18462. DOI: https://doi.org/10.3170/2008-8-18462

Camargo, P. H. S. A., M. A. Pizo, P. H. S. Brancalion and T. A. Carlo. 2020. Fruit traits of pioneer trees structure seed dispersal across distances on tropical deforested landscapes: Implications for restoration. Journal of Applied Ecology 57(12):2329-2339. Doi: 10.1111/1365-2664.13697. DOI: https://doi.org/10.1111/1365-2664.13697

Correll, D. S. and M. C. Johnston. 1970. Manual of the vascular plants of Texas. Texas Research Foundation. Rener, TX, United States of America. 1881 p.

Cuéllar-Rodríguez, G. and E. Jurado. 2016. Seeds and seedlings from isolated mesquite trees. The Journal of the Torrey Botanical Society 144(1):58-62. Doi: 10.3159/TORREY-D-15-00070.1. DOI: https://doi.org/10.3159/TORREY-D-15-00070.1

da Silva, K. A., D. M. dos Santos, J. M. F. F. dos Santos, U. P. de Albuquerque, E. M. N. Ferraz and E. L. Araújo. 2013. Spatio-temporal variation in a seed bank of a semi-arid region in northeastern Brazil. Acta Oecologica 46:25-32. Doi: 10.1016/j.actao.2012.10.008. DOI: https://doi.org/10.1016/j.actao.2012.10.008

De Souza M., M., F. C. Maia y M. A. Pérez. 2006. Bancos de semillas en el suelo. Agriscientia 23(1):33-44. http://www.scielo.org.ar/pdf/agrisc/v23n1/v23n1a05.pdf. (31 de julio de 2023).

DeMars, C. A., D. K. Rosenberg and J. B. Fontaine. 2010. Multi-scale factors affecting bird use of isolated remnant oak trees in agro-ecosystems. Biological Conservation 143(6):1485-1492. Doi: 10.1016/j.biocon.2010.03.029. DOI: https://doi.org/10.1016/j.biocon.2010.03.029

Díaz S., L. y C. Ríos A. 2017. Diásporas de las arvenses más agresivas en los agroecosistemas de Cuba. Centro Agrícola 44(2):75-82. http://scielo.sld.cu/scielo.php?pid=S0253-57852017000200010&script=sci_arttext. (31 de julio de 2023).

Dreber, N. and K. J. Esler. 2011. Spatio-temporal variation in soil seed banks under contrasting grazing regimes following low and high seasonal rainfall in arid Namibia. Journal of Arid Environments 75(2):174-184. Doi: 10.1016/j.jaridenv.2010.09.007. DOI: https://doi.org/10.1016/j.jaridenv.2010.09.007

Dylewski, Ł., Y. K. Ortega, M. Bogdziewicz and D. E. Pearson. 2020. Seed size predicts global effects of small mammal seed predation on plant recruitment. Ecology Letters 23(6):1024-1033. Doi: 10.1111/ele.13499. DOI: https://doi.org/10.1111/ele.13499

Everitt, J. H., D. L. Drawe and R. I. Lonard. 1999. Field guide to the broad-leaved herbaceous plants of South Texas: used by livestock and wildlife. Texas Tech University Press. Lubbock, TX, United States of America. 277 pp. https://www.ttupress.org/9780896724006/field-guide-to-the-broad-leaved-herbaceous-plants-of-south-texas/. (31 de julio de 2023).

Fenner, M. and K. Thompson. 2005. The ecology of seeds. Cambridge University Press. Cambridge, CB, United Kingdom. 260 p.

Filazzola, A., A. R. Liczner, M. Westphal and C. J. Lortie. 2019. Shrubs indirectly increase desert seedbanks through facilitation of the plant community. PLoS One 14(4):e0215988. Doi: 10.1371/journal.pone.0215988. DOI: https://doi.org/10.1371/journal.pone.0215988

Foroughbakhch, R., M. A. Alvarado-Vázquez, A. Carrillo P., J. L. Hernández-Piñero and M. A. Guzmán L. 2013. Floristic diversity of a shrubland in northeastern Mexico. Phyton International Journal of Experimental Botany 82:175-84. http://www.scielo.org.ar/pdf/phyton/v82n2/v82n2a04.pdf. (4 de mayo de 2023).

García A., L. C. 1997. Estudio fenológico y de crecimiento de once especies leñosas del matorral espinoso tamaulipeco en Linares, Nuevo León, México. Tesis de Maestría en Ciencias Forestales. Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León. Linares, NL, México. 119 p.

García, D. and D. Martínez. 2012. Species richness matters for the quality of ecosystem services: a test using seed dispersal by frugivorous birds. Proceedings of the Royal Society B 279(1740):3106-3113. Doi: 10.1098/rspb.2012.0175. DOI: https://doi.org/10.1098/rspb.2012.0175

García, E. 2004. Modificaciones al sistema de clasificación climática de Köppen para adaptarlo a las condiciones de la República Mexicana. Instituto de Geografía de la Universidad Nacional Autónoma de México. Coyoacán, México D. F., México. 98 p.

Gentry, A. H. 1982. Patterns of neotropical plant species diversity. In: Hecht, M. K., B. Wallace and G. T. Prance (Edits.). Evolutionary Biology. Springer. New York, NY, United States of America. pp. 1-84. DOI: https://doi.org/10.1007/978-1-4615-6968-8_1

González‐Varo, J. P., C. S. Carvalho, J. M. Arroyo and P. Jordano. 2017. Unravelling seed dispersal through fragmented landscapes: frugivore species operate unevenly as mobile links. Molecular Ecology 26(16):4309-4321. Doi: 10.1111/mec.14181. DOI: https://doi.org/10.1111/mec.14181

Gordo, O. and J. J. Sanz. 2009. Long‐term temporal changes of plant phenology in the Western Mediterranean. Global Change Biology 15(8):1930-1948. Doi: 10.1111/j.1365-2486.2009.01851.x. DOI: https://doi.org/10.1111/j.1365-2486.2009.01851.x

Guevara, S., J. Laborde y G. Sánchez-Ríos. 2005. Los árboles que la selva dejó atrás. Interciencia 30(10):595-601. https://www.redalyc.org/pdf/339/33910903.pdf. (31 de julio de 2023).

Hadinezhad, M., R. Erfanzadeh and H. Ghelichnia. 2021. Soil seed bank characteristics in relation to different shrub species in semiarid regions. Land Degradation & Development 32(5):2025-2036. Doi: 10.1002/ldr.3856. DOI: https://doi.org/10.1002/ldr.3856

International Business Machines (IBM). 2022. IBM SPSS Statistics 25 Documentation. International Business Machines Corp. New York, NY, United States of America. https://www.ibm.com/support/pages/ibm-spss-statistics-25-documentation#es. (1 de agosto 2023).

Jurado, E. and J. Flores. 2005. Is seed dormancy under environmental control or bound to plant traits? Journal of Vegetation Science 16(5):559-564. Doi: 10.1111/j.1654-1103.2005.tb02396.x. DOI: https://doi.org/10.1111/j.1654-1103.2005.tb02396.x

Jurado, E., E. Estrada and A. Moles̀. 2001a. Characterizing plant attributes with particular emphasis on seeds in Tamaulipan thornscrub in semi-arid Mexico. Journal of Arid Environments 48(3):309-321. Doi: 10.1006/jare.2000.0762. DOI: https://doi.org/10.1006/jare.2000.0762

Jurado, E., J. Navar, H. Villalón and M. Pando. 2001b. Germination associated with season and sunlight for Tamaulipan thornscrub plants in north-eastern Mexico. Journal of arid Environments 49(4):833-841. Doi: 10.1006/jare.2001.0817. DOI: https://doi.org/10.1006/jare.2001.0817

Jurado, E., J. Flores, A. G. Endress, M. Flores, E. Estrada and M. Pando. 2006. Seed removal rates under isolated trees and continuous vegetation in semiarid thornscrub. Restoration Ecology 14(2):204-209. Doi: 10.1111/j.1526-100X.2006.00122.x. DOI: https://doi.org/10.1111/j.1526-100X.2006.00122.x

Levin, S. A. and H. C. Muller-Landau. 2000. The evolution of dispersal and seed size in plant communities. Evolutionary Ecology Research 2:409-435. https://repository.si.edu/bitstream/handle/10088/18533/stri_Levin_and_ML2000EER.pdf?sequence=1&isAllowed=y. (4 de mayo de 2023).

Ma, M., S. L. Collins, Z. Ratajczak and G. Du. 2021. Soil seed banks, alternative stable state theory, and ecosystem resilience. BioScience 71(7):697-707. Doi: 10.1093/biosci/biab011. DOI: https://doi.org/10.1093/biosci/biab011

Mao, R., T. L. T. Nguyen, O. O. Osunkoya and S. W. Adkins. 2019. Spread pathways of the invasive weed Parthenium hysterophorus L.: The potential for water dispersal. Austral Ecology A Journal of ecology in the Southern Hemisphere 44(7):1111-1122. Doi: 10.1111/aec.12774. DOI: https://doi.org/10.1111/aec.12774

Martínez-Adriano, C. A., E. Jurado, J. Flores, E. Estrada-Castillón and H. Gonzalez-Rodríguez. 2021. Effect of induced warming on seedling emergence of Tamaulipan thornscrub at northeastern Mexico. Flora 285:151965. Doi: 10.1016/j.flora.2021.151965. DOI: https://doi.org/10.1016/j.flora.2021.151965

Moles, A. T., D. D. Ackerly, C. O. Webb, J. C. Tweddle, J. B. Dickie and M. Westoby. 2005. A brief history of seed size. Science 307(5709):576-580. Doi: 10.1126/science.1104863. DOI: https://doi.org/10.1126/science.1104863

Moles, A. T., D. S. Falster, M. R. Leishman and M. Westoby. 2004. Small‐seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. Journal of Ecology 92(3):384-396. Doi: 10.1111/j.0022-0477.2004.00880.x. DOI: https://doi.org/10.1111/j.0022-0477.2004.00880.x

Molina-Guerra, V. M., M. Pando-Moreno, E. Alanís-Rodríguez, P. A. Canizales-Velázquez, H. González R. y J. Jiménez-Pérez. 2013. Composición y diversidad vegetal de dos sistemas de pastoreo en el matorral espinoso tamaulipeco del Noreste de México. Revista Mexicana de Ciencias Pecuarias 4(3):361-371. https://www.scielo.org.mx/pdf/rmcp/v4n3/v4n3a7.pdf. (2 de marzo de 2023).

Mora D., C. A., J. Jiménez P., E. Alanís R., E. A. Rubio C., J. I. Yerena Y. y M. A. González T. 2013. Efecto de la ganadería en la composición y diversidad arbórea y arbustiva del matorral espinoso tamaulipeco. Revista Mexicana de Ciencias Forestales 4(17):124-137. Doi: 10.29298/rmcf.v4i17.426. DOI: https://doi.org/10.29298/rmcf.v4i17.426

Mori, S. A. and J. L. Brown. 1998. Epizoochorous dispersal by barbs, hooks, and spines in a lowland moist forest in central French Guiana. Brittonia 50:165-173. https://link.springer.com/article/10.2307/2807846. (31 de julio de 2023). DOI: https://doi.org/10.2307/2807846

Ogle, C. 2023. Cyclospermum leptophyllum. New Zealand Plant Conservation Network. https://www.nzpcn.org.nz/flora/species/cyclospermum-leptophyllum/. (23 de febrero de 2023).

Pando-Moreno, M., E. Jurado, D. Castillo, J. Flores and E. Estrada. 2010. Physical crust does not affect soil seed bank. Arid Land Research and Management 24(3):263-266. Doi: 10.1080/15324981003744966. DOI: https://doi.org/10.1080/15324981003744966

Pérez-Domínguez, R., E. Jurado, M. A. González-Tagle, J. Flores, O. A. Aguirre-Calderón y M. Pando-Moreno. 2013. Germinación de especies del matorral espinoso tamaulipeco en un gradiente de altitud. Revista Mexicana de Ciencias Forestales 4(17):156-163. Doi: 10.29298/rmcf.v4i17.428. DOI: https://doi.org/10.29298/rmcf.v4i17.428

Pijl, L. 1969. Principles of dispersal in higher plants. Springer-Verlag. Heidelberg, BW, Germany. 214 p. https://link.springer.com/book/10.1007/978-3-662-00799-0. (31 de julio de 2023).

Piudo, M. J. y R. Y. Cavero. 2005. Banco de semillas: comparación de metodologías de extracción, de densidad y de profundidad de muestreo. Publicaciones de Biología, Universidad de Navarra, Serie Botánica 16:71-85. https://dadun.unav.edu/bitstream/10171/8024/1/n16a5.pdf. (29 de abril de 2023).

Quevedo-Robledo, L., E. Pucheta and Y. Ribas-Fernández. 2010. Influences of interyear rainfall variability and microhabitat on the germinable seed bank of annual plants in a sandy Monte Desert. Journal of Arid Environments 74(2):167-172. Doi:10.1016/j.jaridenv.2009.08.002. DOI: https://doi.org/10.1016/j.jaridenv.2009.08.002

Rodríguez‐Pérez, J., D. García and D. Martínez. 2014. Spatial networks of fleshy‐fruited trees drive the flow of avian seed dispersal through a landscape. Functional Ecology 28(4):990-998. Doi: 10.1111/1365-2435.12276. DOI: https://doi.org/10.1111/1365-2435.12276

Saatkamp, A., P. Poschlod and D. L. Venable. 2013. The functional role of soil seed banks in natural communities. In: Gallagher, R. S. (Edit.). Seeds: The ecology of regeneration in plant communities. CABI. Wallingford, OX, United Kingdom. pp. 263-295. DOI: https://doi.org/10.1079/9781780641836.0263

Sarmiento-Muñoz, T. I., E. Alanís-Rodríguez, J. M. Mata-Balderas y A. Mora-Olivo. 2019. Estructura y diversidad de la vegetación leñosa en un área de matorral espinoso tamaulipeco con actividad pecuaria en Nuevo León, México. CienciaUAT 14(1):31-44. Doi: 10.29059/cienciauat.v14i1.1001. DOI: https://doi.org/10.29059/cienciauat.v14i1.1001

Shiferaw, W., S. Demissew and T. Bekele. 2018. Ecology of soil seed banks: Implications for conservation and restoration of natural vegetation: A review. International Journal of Biodiversity and Conservation 10(10):380-393. Doi: 10.5897/IJBC2018.1226. DOI: https://doi.org/10.5897/IJBC2018.1226

Society for Ecological Restoration (SER) and Royal Botanic Gardens Kew (RBGK). 2023. Seed Information Database. https://ser-sid.org/. (23 de febrero de 2023).

Universidad de Sonora (Unison) y Universidad Estatal de Arizona (ASU). 2023. Red de Herbarios del Noroeste de México. https://herbanwmex.net/portal/index.php. (25 de febrero de 2023).

Valdes-Alameda, R., E. Jurado, J. Flores, M. Pando-Moreno, E. Estrada y D. E. Gurvich. 2021. Densidad de semillas y plántulas de Zanthoxylum fagara en México y Zanthoxylum coco en Argentina: influencia de plantas bajo las cuales ocurren y borde de la vegetación. Botanical Sciences 99(1):67-79. Doi:10.17129/botsci.2636. DOI: https://doi.org/10.17129/botsci.2636

Valerio, C. E. e I. Moreira. 1986. Fenología de compuestas herbáceas (Compositae) en el Parque del Este, Costa Rica. Revista de Biología Tropical 34(1):161-163. https://revistas.ucr.ac.cr/index.php/rbt/article/view/24404/24532. (31 de julio de 2023).

Vargas-Mendoza, C. F., I. Ortegón-Campos, D. Marrufo-Zapata, C. M. Herrera and V. Parra-Tabla. 2015. Genetic diversity, outcrossing rate, and demographic history along a climatic gradient in the ruderal plant Ruellia nudiflora (Acanthaceae). Revista Mexicana de Biodiversidad 86(2):508-520. Doi: 10.1016/j.rmb.2015.04.034. DOI: https://doi.org/10.1016/j.rmb.2015.04.034

Waitman, B. A., S. B. Vander Wall and T. C. Esque. 2012. Seed dispersal and seed fate in Joshua tree (Yucca brevifolia). Journal of Arid Environments 81:1-8. Doi: 10.1016/j.jaridenv.2011.12.012. DOI: https://doi.org/10.1016/j.jaridenv.2011.12.012

Warnock, A. D., M. E. Westbrooke, S. K. Florentine and C. P. Hurst. 2007. Does Geijera parviflora Lindl. (Rutaceae) facilitate understorey species in semi-arid Australia? TheRangeland Journal 29(2):207-216. Doi: 10.1071/RJ07032. DOI: https://doi.org/10.1071/RJ07032

Williams, J. T. 1963. Biological flora of the British Isles: Chenopodium album L. Journal of Ecology 51(3):711-725. https://www.jstor.org/stable/2257758?origin=crossref. (31 de julio de 2023). DOI: https://doi.org/10.2307/2257758

Willson, M. F., B. L. Rice and M. Westoby. 1990. Seed dispersal spectra: a comparison of temperate plant communities. Journal of Vegetation Science 1(4):547-562. Doi: 10.2307/3235789. DOI: https://doi.org/10.2307/3235789

Zar, J. H. 1999. Biostatistical analysis. Prentice Hall. Upper Saddle River, NJ, United States of America. 663 p.

Published

2023-08-31

How to Cite

Valdes Alameda, Renata Aide, Enrique Jurado, Joel Flores, and Eduardo Estrada. 2023. “Soil Seed Bank under Isolated Trees of the Tamaulipan Thorny Scrub”. Revista Mexicana De Ciencias Forestales 14 (79). México, ME:31-57. https://doi.org/10.29298/rmcf.v14i79.1344.

Issue

Section

Scientific article

Similar Articles

You may also start an advanced similarity search for this article.