Sistema de monitoreo meteorológico en un bosque templado a partir de análisis del paisaje

Autores/as

  • Gabriel H. Virgen-Cobos Universidad Autónoma Chapingo, División de Ciencias Forestales. México
  • Jesús David Gómez-Díaz Universidad Autónoma Chapingo, Departamento de Suelos. México.
  • Ma. Amparo Borja-de la Rosa Universidad Autónoma Chapingo, División de Ciencias Forestales. México.
  • Adán Guillermo Ramírez García Universidad Autónoma Chapingo, Centro Regional Universitario del Noroeste.
  • Alejandro Ismael Monterroso Rivas División de Ciencias Forestales y Departamento de Suelos. Universidad Autónoma Chapingo.

DOI:

https://doi.org/10.29298/rmcf.v13i74.1260

Palabras clave:

calibración, estaciones meteorológicas, instalación, relieve, representatividad, unidades cartográficas

Resumen

El monitoreo de variables meteorológicas es importante para el estudio de procesos biofísicos como el desarrollo y crecimiento de plantas, captura y retención de agua, aumento de nutrientes y aprovechamiento de servicios ambientales. El objetivo del estudio fue proponer un sistema de monitoreo meteorológico a partir del análisis del medio natural que proporcione una base de datos representativa. La propuesta se desarrolló en la Estación Forestal Experimental Zoquiapan, en el centro de México. El método incluyó la representatividad de las condiciones biofísicas en un bosque con clima templado semifrío. Primero, se generaron mapas de geoformas, clima y vegetación para delimitar las unidades cartográficas homogéneas de paisaje. Posteriormente, mediante criterios de emplazamiento, se seleccionaron tres unidades cartográficas para el establecimiento de tres estaciones meteorológicas. Los resultados incluyeron la caracterización del paisaje, así como la propuesta para establecer las estaciones meteorológicas. El sistema se integró con dos estaciones automáticas Davis Instruments y otra que opera con microcontrolador de código abierto Arduino. Los datos se recuperan mensualmente en una computadora portátil con cable USB. Antes de la instalación de las estaciones, las mediciones dadas por los sensores se compararon con los valores de una estación de referencia. Los datos de los primeros días de operación revelaron diferencias en las variables de las unidades de paisaje, y se concluye que ubicar las estaciones en una trayectoria altitudinal puede contribuir a relacionar el clima con diferente vegetación y geoformas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adepoju, T. M., M.Oladele, A.Kasali and G.Fabiyi. 2020. Development of a Low-Cost Arduino-Based Weather Station. FUOYE Journal of Engineering and Technology 5(2): 69-73. http://dx.doi.org/10.46792/fuoyejet.v5i2.508 DOI: https://doi.org/10.46792/fuoyejet.v5i2.508

Blanco, S., G. Ceballos, C. Galindo, J. M. Maass, R. Patrón, A. Pescador and I. Suarez A. 1981. Ecología de la estación experimental Zoquiapan: descripción general, vegetación y fauna (1a ed.). México: Serie Agronomía 2, Universidad Autónoma Chapingo. 114 p.

G. Corvino, A. Lessio and E. Borgogno-Mondino, "Monitoring Rice Crops in Piemonte (Italy): Towards an Operational Service Based on Free Satellite Data," IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, pp. 9070-9073, doi: 10.1109/IGARSS.2018.8518634. DOI: https://doi.org/10.1109/IGARSS.2018.8518634

DAVIS. 2015. Weather Instruments. Retrieved from: http://www.davisnet.com/weather-monitoring/ (Consulted on october 20, 2019).

Ferdoush, S. and X. Li. 2014. Wireless sensor network system design using raspberry Pi and arduino for environmental monitoring applications. Procedia Computer Science, 34: 103-110. http://doi.org/10.1016/j.procs.2014.07.059 DOI: https://doi.org/10.1016/j.procs.2014.07.059

Faugel, H., and Bobkov, V. (2013). Open source hard- and software : Using arduino boards to keep old hardware running. Fusion Engineering and Design, 88, 1276–1279. http://doi.org/10.1016/j.fusengdes.2012.12.005 DOI: https://doi.org/10.1016/j.fusengdes.2012.12.005

García, E. 2004. Modificaciones al sistema de clasificación climática de Köppen. (5a ed.). México: Instituto de Geografía de la UNAM. Ciudad de México, México. 91 p.

Gómez J., D., D. Etchevers J., I. Monterroso A., C. Gay, J. Campo and M. Martínez. 2008. Spatial estimation of mean temperature and precipitation in areas of scarce meteorological information. Atmósfera, 21(1), 35-56. Retrieved from https://www.revistascca.unam.mx/atm/index.php/atm/article/view/8596

Gómez M., L. and L. Arriaga. 2007. Modeling the effect of climate change on the distribution of oak and pine species of Mexico. Conservation Biology, 21(6), 1545-1555. http://doi.org/10.1111/j.1523-1739.2007.00814.x DOI: https://doi.org/10.1111/j.1523-1739.2007.00814.x

Instituto Mexicano de Tecnología del Agua (IMTA). 2006. Extractor rápido de información climática (ERIC) versión 3. México: Servicio Meteorológico Nacional. Instituto Mexicano de Tecnología del Agua

Instituto Nacional de Ecología (INE). 2010. Manual 4. Operación de estaciones de medición de la calidad del aire, mantenimiento y calibración de sus componentes (1a ed.). México: Instituto Nacional de Ecología. 75p.

Instituto Nacional de Estadística, Geografía e Informática (INEGI). 2016a. Cuerpos de agua. Instituto Nacional de Estadística y Geografía. Retrieved from: http://www.inegi.org.mx/geo/contenidos/recnat/hidrologia/infoescala.aspx (Consulted on july 18, 2016)

Instituto Nacional de Estadística, Geografía e Informática (INEGI). 2016b. Estructuras geológicas. Instituto Nacional de Estadística y Geografía. Retrieved from: http://www.inegi.org.mx/geo/contenidos/recnat/geologia/infoescala.aspx (Consulted on july 18, 2016)

Instituto Nacional de Estadística, Geografía e Informática (INEGI). 2016c. Modelo de elevación digital. Instituto Nacional de Estadística y Geografía. Retrieved from: http://www.inegi.org.mx/geo/contenidos/datosrelieve/continental/Descarga.aspx (Consulted on july 18, 2016)

Instituto Nacional de Estadística, Geografía e Informática (INEGI). 2016d. Uso de suelo y vegetación. Instituto Nacional de Estadística y Geografía Retrieved from: http://www.inegi.org.mx/geo/contenidos/recnat/usosuelo/ (Consulted on august 22, 2016)

International Soil Reference and Information Centre (ISRIC). 2005. Updated global and national soils and terrain digital databases (SOTER). International Soil Reference and Information Centre. https://www.isric.org/sites/default/files/isric_report_2013_04.pdf (Consulted on august 22, 2016)

Juárez, A., C.Gay and Y. Flores. 2005. Impact of the Popocatepetl's volcanic activity on the air quality of Puebla City, México. Atmósfera, 18(1), 57-69. Retrieved from https://www.revistascca.unam.mx/atm/index.php/atm/article/view/8537

Katyal, A., R. Yadav and M. Pandey. 2016. Wireless Arduino Based Weather Station. International Journal of Advanced Research in Computer and Communication Engineering 5(4): 274-276, Retrieved from:https://www.ijarcce.com/upload/2016/april-16/IJARCCE%2070.pdf (Consulted on july 18, 2016).

Li, D. 2014. Assessing the impact of interannual variability of precipitation and potential evaporation on evapotranspiration. Advances in Water Resources, 70, 1-11. http://doi.org/10.1016/j.advwatres.2014.04.012 DOI: https://doi.org/10.1016/j.advwatres.2014.04.012

Lin, Y. and E.Zini. 2008. Free/libre open source software implementation in schools: Evidence from the field and implications for the future. Computer & education, 50, 1092-1102. http://doi.org/10.1016/j.compedu.2006.11.001 DOI: https://doi.org/10.1016/j.compedu.2006.11.001

Lomas-Barrié, C. T., Terrazas-Domínguez, S., & Tchikoué-Maga, H. (2005). Proposal of territorial ecological ordering for the National Park Zoquiapan and annex. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 11(1), 57–71. Retrieved from https://revistas.chapingo.mx/forestales/?section=articles&subsec=issues&numero=31&articulo=431

Martínez del Castillo, E., Serrano Notivoli, R., Novak, K., Longares, L. A., Arrechea, E., Luis Arrillaga, M. D., & Saz-Sánchez, M. Á. (2012). Cuantificación de los gradientes climáticos altitudinales en la vertiente norte del Macizo del Moncayo a partir de una nueva red de estaciones automáticas en altura. Publicaciones de la Asociación Española de Climatología. Serie A; 8. http://hdl.handle.net/20.500.11765/8316

Martínez-Santiago, S., Alvarado-Segura, A., Zamudio-Sánchez, F., & Cristobal-Acevedo, D. (2017). Spatiotemporal analysis of forest modeling in Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 23(1), 5–22. doi: 10.5154/r.rchscfa.2016.01.003 DOI: https://doi.org/10.5154/r.rchscfa.2016.01.003

Meulenert P., Á. R., H. U. Ramírez-Sánchez, F. O. García-Concepción, M. E. García-Guadalupe y J. Alcalá-Gutiérrez. 2005. Implementación de un sistema de alerta temprana contra fenómenos meteorológicos extremos e incendios forestales del Área Natural Protegida «Bosque de la Primavera» Jalisco, México, como parte de un proyecto de desarrollo y monitoreo sistemático e integral. México: Instituto de Astronomía y Meteorología, Universidad de Guadalajara.

Paredes-González, A., Monterroso-Rivas, A. I., Rodríguez-Esparza, L. J., and Zamudio-Sánchez, F. J. (2018). Projection and probability of land use change in Zoquiapan, Mexico: considerations for forest management. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 24(1), 59-71. doi: 10.5154/r.rchscfa.2017.07.041 DOI: https://doi.org/10.5154/r.rchscfa.2017.07.041

Pompa G., M., F. J. Rodríguez F., C. A. Aguirre S. y L. Miranda A. 2013. Influencia de la evaporación en el crecimiento forestal. Agrociencia, 47(8), 829-836. https://www.agrociencia-colpos.mx/index.php/agrociencia/article/view/1059

Reyes A., G., S. Adame M. y E. Cadena V. 2018. Vulnerabilidad ante la variabilidad climática en los cultivos de maíz Zea mays. Sociedad y Ambiente, 6(17):93-113. ISSN:2007-6576 https://doi.org/10.31840/sya.v0i17.1842 DOI: https://doi.org/10.31840/sya.v0i17.1842

Romo J., R. y R. Arteaga. 1989. Meteorología agrícola. México: Departamento de irrigación, Universidad Autónoma Chapingo.

Sparkfun. 2013. Sparkfun. Retrieved from: https://learn.sparkfun.com/tutorials/weather-shield-hookup-guide (Consulted on october 17, 2016).

Stallman, R. M. 2004. Software libre para una sociedad libre. Madrid, España: Traficantes de sueños. Retrieved from: https://www.gnu.org/philosophy/fsfs/free_software.es.pdf (Consulted on july 18, 2016).

Torres-Quezada, J., Coch, H., and Isalgué, A. (2021). Data set of climatic factors measured in a low latitude region with warm and humid climate: Solar radiation, cloud cover and sky temperature. Data in Brief, 38:107404. https://doi.org/10.1016/J.DIB.2021.107404 DOI: https://doi.org/10.1016/j.dib.2021.107404

World Meteorological Organization (WMO). 2008. Guía de instrumentos y métodos de observación meteorológicos (No. 8). Suiza: World Meteorological Organization. Retrieved from: https://library.wmo.int/doc_num.php?explnum_id=3664 (Consulted on july 18, 2016).

Yang, C. H., and Regan, A. C. (2014). Methodology for the prioritization of environmental sensor station installation (case study of South Korea). Transport Policy, 32, 53–59. http://doi.org/10.1016/j.tranpol.2013.12.012 DOI: https://doi.org/10.1016/j.tranpol.2013.12.012

Publicado

31-10-2022

Cómo citar

Virgen-Cobos, Gabriel H., Jesús David Gómez-Díaz, Ma. Amparo Borja-de la Rosa, Adán Guillermo Ramírez García, y Alejandro Ismael Monterroso Rivas. 2022. «Sistema De Monitoreo meteorológico En Un Bosque Templado a Partir De análisis Del Paisaje». Revista Mexicana De Ciencias Forestales 13 (74). México, ME:145-73. https://doi.org/10.29298/rmcf.v13i74.1260.

Número

Sección

Artículo Científico

Artículos similares

También puede {advancedSearchLink} para este artículo.