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Abstract 

Quantifying biodiversity is key to natural resource conservation; however, data collection can be time-consuming and 
costly. Given that climate and remote sensing data help in the prediction of species diversity, the objective of this 
study was to analyze the relationship of climate data and the Normalized Difference Vegetation Index (NDVI) with 
tree diversity in a temperate forest in Northern Mexico. Species richness (S), Simpson's (1-D) and Shannon's (H) 
diversity indices were calculated at 663 sampling sites. Subsequently, an exploratory regression analysis was 
performed to obtain regression models that would account for the relationship of tree diversity indices with the NDVI, 
climatic data, and the number of trees. The best model for each diversity index and its predictor variables was 
integrated into a Geographically Weighted Regression (GWR) model. The results showed that the relationship of 
diversity indices and predictor variables varies across the space. The variables showed greater predictive potential in 
the Northern and Northwestern part of the study area. The NDVI was the variable with the greatest relative influence 
in the explanation of the diversity indices; therefore, it can function as a proxy for factors associated with tree 
diversity. 

Keywords: Spatial distribution, vegetation index, diversity indices, forest management, spatial regression, 
species richness. 

Resumen 

Cuantificar la biodiversidad es clave para la conservación de los recursos naturales; sin embargo, la recolección 
de datos puede llevar mucho tiempo y resultar costosa. Dado que los datos climáticos y de teledetección ayudan 
a la predicción de la diversidad de especies, el objetivo de este estudio fue analizar la relación entre datos 
climáticos y el Índice de Vegetación de Diferencia Normalizada (IVDN) con la diversidad arbórea, en un bosque 
templado del Norte de México. Se calculó la riqueza de especies (S), los índices de diversidad de Simpson (1-D) 
y de Shannon (H) en 663 sitios de muestreo. Posteriormente se realizó un análisis de regresión exploratoria 
para obtener modelos de regresión que expliquen la relación de los índices de diversidad de árboles con el 
IVDN, los datos climáticos y el número de árboles. El mejor modelo de cada índice de diversidad y sus variables 
predictoras se integró en un modelo de Regresión Ponderada Geográficamente (RGP). Los resultados mostraron 
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que la relación de los índices de diversidad y las variables predictoras varía a través del espacio. Las variables 
registraron mayor potencial de predicción en la zona Norte y Noroeste del área de estudio. El IVDN fue la 
variable de mayor influencia relativa en la explicación de los índices de diversidad, por lo que puede funcionar 
como sustituto de factores asociados con la diversidad arbórea. 

Palabras Clave: Distribución espacial, índice de vegetación, índices de diversidad, manejo forestal, regresión 
espacial, riqueza de especies. 

 

 

Introduction 

 

 

Biodiversity loss is increasingly evident and worrisome, mainly due to the 

deforestation resulting from agricultural activities (Leija et al., 2021); consequently, 

interest in measuring and modeling it has increased (Gillespie et al., 2008). 

The most popular strategy has been to model individual species distributions one at 

a time (Miller, 2010; Aceves-Rangel et al., 2018; Martínez-Sifuentes et al., 2021). 

However, spatial modeling of species diversity at the community level can generate 

significant benefits, particularly if many of these taxa are infrequently recorded 

(Ferrier and Guisán, 2006). 

Remote sensing is one of the main tools available for the study and monitoring of 

biodiversity patterns across different spatial scales (Sánchez-Díaz, 2018), given that 

it is possible to assess the spectral characteristics of communities (Arekhi et al., 

2017). Such monitoring and evaluation is based on establishing relationships 

between the spectral information in an image and the tree species diversity 

measured in the field (Madonsela et al., 2018). Likewise, vegetation indices 

estimated thanks to remote sensing allow us to know the different plant elements 

located on the surface of the Earth (Sancha, 2010; Vela-Pelaez et al., 2024). 
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Globally, several studies have used the Normalized Difference Vegetation Index 

(NDVI) to estimate tree diversity, based on its sensitivity to primary productivity, 

that defines the spatial variation in plant diversity (Madonsela et al., 2018). Given 

that such spatial variation or heterogeneity is an important driver of species 

richness, population structure, and complexity (Amatulli et al., 2018), it is of great 

interest to use techniques that may help understand such variation and, 

consequently, in due course, make better decisions. 

The main objective of this study was to reveal the spatial relationship between tree 

diversity, NDVI, and certain environmental variables according to the Geographically 

Weighted Regression model. The hypothesis is that the relationship between tree 

diversity, the NDVI, and environmental variables vary across space. 

 

 

Materials and Methods 

 

 

Study area 

 

 

The study area included the Adolfo Ruiz Cortines ejido, located in Pueblo Nuevo 

municipality, in the Southwestern region of the state of Durango, within the 

Western Sierra Madre (Figure 1). The climates present are temperate sub-humid 

C(w2) and semi-warm sub-humid (A)C(w2), with an average annual precipitation of 

1 000 mm. The altitude above the sea level varies between 2 063 and 2 670 m 

(Rosales, 2016). The main vegetation types are mixed forests composed of the 
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genera Pinus L. and Quercus L., the most representative vegetation types being 

pine forest (P), pine-oak forest (Pq) and oak-pine forest (Qp) (Rosales, 2016). 

 

 

Vegetación = Vegetation; Bosque de pino = Pine forest; Bosque de pino-encino = 

Pine-oak forest; Pastizal inducido = Induced grassland; Vegetación secundaria 

arbustiva de bosque de encino = Shrub secondary vegetation of oak forest; 

Vegetación secundaria arbustiva de selva baja caducifolia = Shrub secondary 

vegetation of low deciduous rainforest; Vegetación secundaria arbórea de bosque de 

pino-encino = Tree secondary vegetation of pine-oak forest. 
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Figure 1. Location of the study area, main vegetation types, and distribution of 

sampling sites. 

 

 

Dasometric data 

 

 

Based on information from the ejido's Forest Management Program, the authors 

analyzed dasometric data of a total of 41 928 trees belonging to 20 species from 

663 sampling sites circular in shape with a surface area of 1 000 m2 (Table 1). 

 

Table 1. Analyzed species and number of trees. 

Species Number of trees 

Pinus cooperi C. E. Blanco 561 

Pinus durangensis Martínez 4 150 

Pinus leiophylla Schiede ex Schltdl. & Cham. 7 532 

Pinus teocote Schltdl. & Cham. 2 645 

Pinus engelmannii Carrière 2 138 

Pinus lumholtzii B. L. Rob. & Fernald 54 

Pinus ayacahuite C. Ehrenb. ex Schltdl. 52 

Pinus chihuahuana Engelm. 1 

Juniperus deppeana Steud. 1 813 

Cupressus spp. 1 

Quercus sideroxyla Bonpl. 7 211 

Quercus durifolia Seemen 1 253 

Quercus laeta Liebm. 257 

Quercus eduardii Trelease 195 

Quercus crassifolia Bonpl. 21 

Quercus splendens Née 132 
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Quercus rugosa Née 9 963 

Alnus acuminata Kunth 3 

Alnus spp. 10 

Arbutus xalapensis Kunth 3 936 

 

As indicators of alpha diversity, the total number of species (species richness S) and 

Simpson's Diversity Index (1) (Equation 1) (Simpson, 1949; Peet, 1974) were 

measured at each site, and, given that their value is inverse to the evenness 

(Equation 2) (Lande, 1996), diversity can be calculated as follows: 

 

     (1) 

 

     (2) 

 

Where: 

 = Number of trees of a particular species 

 = Number of trees of all the species 

 = Proportional abundance of the species 

 

Also utilized was the Shannon Index (Equation 3), which measures the average 

degree of uncertainty in predicting to which species a tree chosen at random from a 

collection will belong (Peet, 1974; Magurran, 1988). It acquires values between 0, 
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when there is only one species, and the logarithm of S, when all the species are 

represented by the same number of trees (Magurran, 1988). 

 

     (3) 

 

Where: 

 = Shannon's Index 

 = Proportional abundance of the species 

= Natural logarithm 

 

 

NDVI and climate data 

 

 

The NVDI was computed monthly and annually, using the Landsat 8 Surface 

Reflectance Tier 1 image set (30 m spatial resolution) in the Google Earth Engine® 

platform. These data have been atmospherically corrected using the LaSRC algorithm 

and include a cloud, shadow, water, and snow mask produced with CFMask and a 

per-pixel saturation mask. The images used correspond to the period from January 1, 

2020 to December 31, 2020. One image was used for each month of the year with 

the least amount of clouds, and for the annual NDVI data, an average of the 12 

images was calculated. Subsequently, the images were cropped to fit the study area. 

In addition, data were obtained on mean annual precipitation and minimum, mean and 

maximum temperatures. These data were recorded in raster format (600 m spatial 
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resolution) through the Digital Climate Atlas of Mexico and represent the average for 

the period 1902-2011 (Instituto de Ciencias de la Atmósfera y Cambio Climático, 

2009). 

 

 

Geoprocessing 

 

 

Sampling sites were georeferenced and linked to the diversity index in a point-type 

shapefile. To match the diversity index data for each sampling site with the NDVI and 

climate information, a data extraction process was performed in ArcGIS 10.8® (ESRI, 

2020), which consisted of extracting cell values from a raster based on a set of 

coordinate points. The resulting file was a point-type shapefile with attributes of 

coordinates, sampling site number, total number of trees per site, number of trees 

per species, diversity index values, monthly and annual average NDVI values, and 

climatic data of mean annual precipitation and minimum, mean and maximum 

temperatures. 

 

 

Statistical analysis 

 

 

An Exploratory Regression analysis was carried out using the ArcGIS 10.8® (ESRI, 

2020) software to generate regression models that would explain the relationship 

between tree diversity and the NDVI and climate data. The dependent variables were 
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the values of tree diversity indices, and the independent variables were the values of 

the NDVI, climate data, and the number of trees in each sampling site. In this 

analysis, all possible combinations of the candidate independent variables were 

evaluated. Unlike Stepwise Regression, which looks for models with high adjusted R2 

values, Exploratory Regression tracks models that meet all the requirements and 

assumptions of the Ordinary Least Squares (OLS) method (ESRI, 2024). 

Subsequently, to analyze the spatial pattern of the relationship between tree diversity 

and the NDVI, climate data, and number of trees, the models obtained using the 

Exploratory Regression were integrated into the Geographically Weighted Regression 

(GWR) model (Equation 4); i. e., the same models were utilized, but the spatial 

component (location) was incorporated in their structure. The method fits a 

regression model for each observation (in this case for each sampling site) based on 

data from close neighbors and, under a concept of distance (bandwidth), gives more 

weight to the closest neighbor and vice versa (Brunsdon et al., 1996). The optimal 

bandwidth for each model was identified using an adaptive kernel function that was 

evaluated by minimizing the Akaike Information Criterion (AIC) (Fotheringham et al., 

2002). According to Fotheringham et al. (2002), the model can be expressed as 

follows: 

 

     (4) 

 

Where: 

 = Dependent variable 

 = Intercept 

 = Coordinates the ith observation 
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 = Number of independent variables 

 = Slope 

 = Independent variables 

 = Model error 

 

The Geographically Weighted Regression model was fitted in GWR 4.0.90 software 

(Nakaya, 2015), which also fits the Ordinary Least Squares (OLS) regression model 

and through an F-test compares the improvements of the GWR model about the 

OLS model (Nakaya, 2016). 

 

 

Results 

 

 

Exploratory Regression Analysis 

 

 

An Exploratory Regression analysis indicated the combination of independent 

variables that best met the assumptions of the OLS method for each model. The 

independent variables for the regression model explaining species richness (S) were 

the NDVI values for the month of March (NDVIMarch), the number of trees present at 

each site, and the mean annual rainfall. For the Simpson (1-D) and Shannon (H) 

index models, the independent variables were the values of the January NDVI 
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(NDVIJanuary) and the number of trees. All variables were statistically significant 

(p≤0.05). 

 

 

OLS regression models 

 

 

The regression equations adjusted for the diversity indices and their explanatory 

variables through OLS showed a low explanation of the observed variation (R2). The 

values of the variance inflation factor (VIF) of the explanatory variables of the 

diversity indexes did not show multicollinearity issues, as in all cases the values 

were lower than the reference value (7.5). In addition, the regression coefficients 

indicated that, in all cases, the NDVI was the variable of greatest relative 

importance, followed by the number of trees. In the case of species richness (S), 

the variable of least relative importance was precipitation (Table 2). 

 

Table 2. Regression coefficients of OLS models adjusted for diversity indices. 

Index Variable Regression 
coefficient (ß) P value Standard 

error AIC R2 

Species 
richness (S) 

Intercept 9.1347 0.000 2.09 2 239.05 0.15 

NDVIMarch 2.0978 0.002 0.68 

Number of trees 0.0178 0.000 0.002 

Rainfall -0.0055 0.033 0.002 

Simpson (1-D) Intercept 0.6621 0.000 0.02 -921.9 0.005 

NDVIJanuary 0.1617 0.045 0.08 

Number of trees 0.00005 0.007 0.0001 

Shannon (H) Intercept 1.3146 0.000 0.05 286.09 0.01 

NDVIJanuary 0.4071 0.048 0.2 

Number of trees 0.0009 0.033 0.0004 
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AIC = Akaike Information Criterion. 

 

 

GWR models 

 

 

The number of spatial units (sampling sites) considered for the fit of the GWR 

models was 663, the bandwidth was defined as 48 neighbors for the species 

richness (S) model and 46 for the Simpson and Shannon index models. The fitted 

GWR models showed lower AIC values than those obtained with the OLS models. 

These AIC values were 2 174.42 for the species richness (S) explanatory model, -1 

000.37 for the Simpson's Index model, and 195.72 for the Shannon Index model. 

The above indicated that the GWR models had an improvement in error reduction, 

concerning the OLS models. In addition, based on the F-tests, the reduction in the 

sum of squares of GWR was determined to be significant (p<0.05) in all cases. This 

suggests that the GWR models are statistically different from the OLS models. 

Regarding the regression coefficients of the GWR model, it was also observed that 

the variable with the highest relative importance was the NDVI in all cases (Table 

3). 

 

Table 3. Summary statistics of the regression coefficients of the fitted GWR models 

for the diversity indices. 

Index Variable Mean Standard 
deviation Minimum Maximum Average t-

value 

Species 
richness (S) 

Intercept 6.8749 12.4785 -26.6498 33.518 1.4216 

NVDIMarch 2.3361 2.1847 -1.9417 6.4714 1.4187 

Number of 0.0183 0.0076 -0.0038 0.0307 3.8003 
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trees 

Rainfall -0.0031 0.0136 -0.0344 0.0325 -0.5272 

Simpson (1-D) Intercept 0.5869 0.0683 0.4305 0.7446 12.1779 

NDVIJanuary 0.6939 0.5533 -0.1278 2.3567 2.0044 

Number of 
trees 

-0.00005 0.0008 -0.0024 0.001 -0.1102 

Shannon (H) Intercept 1.1338 0.1859 0.6952 1.5882 9.6453 

NDVIJanuary 1.7722 1.5229 -0.9463 5.8945 2.0255 

Number of 
trees 

0.0005 0.0019 -0.0049 0.0028 0.5003 

 

The GWR approach allowed the mapping of model statistics and the analysis of their 

spatial variability. Figure 2A shows the spatial distribution of the NDVIMarch that 

corresponded to the one with the highest association with the species richness. The 

highest values of the regression coefficients of the number of trees tend to be 

distributed in the Northern part of the property (Figure 2B). Rainfall had a positive 

relationship with species richness in some spatial units, while in others it had a 

negative relationship (Figure 2C). The highest values for the regression coefficients of 

NDVIMarch were distributed in the Central-Northern part of the property, and the 

lowest, in the Northwestern portion (Figure 2D). Regarding the spatial variation of 

the coefficients of determination (local R2s), the highest values were registered in the 

Northern part of the property (Figure 2E). This variability in the local R2s indicates the 

locations where the variables explain the diversity indices to a greater or lesser 

extent. 
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A = Regression coefficient; B = Regression coefficients associated with a number of 

trees; C = Regression coefficients associated with rainfall; D = Regression 

coefficients associated with the NDVIMarch; E = Local R2s. Kilómetros = Kilometers. 

Figure 2. Spatial distribution of GWR statistics for species richness. 

 

Figure 3A shows the spatial distribution of the NDVI January, which exhibited the 

highest association with the Shannon index. The Regression coefficient of the 

number of trees had the lowest relative importance of the analyzed variables 

(Figure 3B). The highest values of relative importance for a number of trees showed 
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a tendency to be distributed in the Northern part of the property. The Regression 

coefficient of the NDVIJanuary registered the highest relative importance, with the 

highest values distributed toward the Northwest of the property, while the lowest 

values were for the Northeast to Southwest area (Figure 3C). Finally, the local R2s 

had the highest values in the Northwest of the site, where the NDVIJanuary showed 

the highest relative importance. The lowest values were distributed in most of the 

analyzed samples (Figure 3D). 

 

 

A = NDVIJanuary; B = Regression coefficient associated with a number of trees; C = 

Regression coefficients associated with NDVIJanuary; D = Local R2s. Kilómetros = 

Kilometers. 

Figure 3. Spatial distribution of GWR statistics for Shannon index. 
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The spatial distribution of NDVIJanuary showed the strongest association with 

Simpson's index (Figure 4A). The Regression coefficient of the number of trees 

registered the lowest relative importance of all the variables analyzed (Figure 4B); 

the highest values for the relative importance of number of trees were distributed in 

the Northern, Central, and Southern parts of the total distribution of the sites within 

the property. The lowest values were clustered to the Northwest of the property 

boundary and shared this distribution zone with the highest January values. The 

lowest values of the January regression coefficient were recorded from Northeast to 

East and South (Figure 4C). The local R2 values followed the same distribution 

pattern (Figure 4D). 
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A = NDVIJanuary; B = Regression coefficient associated with a number of trees; C = 

Regression coefficients associated with NDVIJanuary; D = Local R2s. Kilómetros = 

Kilometers. 

Figure 4. Spatial distribution of GWR statistics for Simpson's index. 

 

 

Discussion 

 

 

Understanding how species diversity varies across space and exploring the 

processes and driving mechanisms involved have been fundamental goals of 

ecology (Balvanera and Aguirre, 2006) and have contributed to the development of 

different estimation methods that make it possible to improve the traditional 

classification methods (Hernández-Stefanoni et al., 2012). 

In this study, the spatial variation of the relationship of tree diversity indices with 

NDVI values, climate data, and number of trees was analyzed using the GWR 

model. The use of spatially adjusted regression models, such as the GWR, improves 

the estimation of the statistics in comparison with OLS (Mallick et al., 2021; Cabral-

Alemán et al., 2022; Lu et al., 2022); this was also observed in the present study. 

In addition, the use of GWR allowed the visualization of the predictive power of the 

independent variables analyzed, as well as the spatial distribution of the statistics 

and their respective mapping. 

Notably, it was determined that the relationship of tree diversity indices with NDVI 

values, climatic data, and number of trees varied across space. Likewise, the 

explanatory power of each adjusted GWR model showed a tendency to vary in 

space; that is, there are areas where the R2 was higher: for example, in the 

Northern and Northwestern part of the study area. It should be noted that these 
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areas coincide with the most productive areas of the property in terms of biomass 

and carbon (Cartus et al., 2014; Vargas-Larreta et al., 2017). In addition, in these 

areas, a higher relationship between the NDVI and tree diversity was observed; this 

can be explained by the direct relationship between the biomass and structural 

variables and the NDVI (Meng et al., 2016). Thus, the relaionship between IVDN 

and tree diversity supports the positive productivity-diversity assumption, which 

states that the relationship between productivity and species diversity follows an 

environmental gradient (Madonsela et al., 2017). Another important finding was the 

relationship of the diversity indices with the NDVI of different months; that is, 

species richness was more closely related to the NDVIMarch, while the Simpson's and 

Shannon's indices showed a closer relationship with the NDVIJanuary. These results 

are consistent with some precedents indicating that diversity indices tend to relate 

mostly to monthly NDVI values rather than to annual values (Meng et al., 2016; 

Madonsela et al., 2017); this has been directly related to the beginning of the 

growing season, as the onset of leaf senescence in trees marks an increase in NDVI 

values (Lu et al., 2022). For the study area, the growing season begins after cold 

conditions (January-March), characterized by low evaporation and greater soil 

moisture (Chávez-Gándara et al., 2017), agreeing with the period when the NDVI-

diversity ratio was higher. 

As for the relative influence of the explanatory variables of diversity, the NDVI was 

the most influential in explaining diversity indices; thus, it is an important predictor of 

tree diversity (Arekhi et al., 2017; Madonsela et al., 2018), and functions as a 

surrogate for factors associated with species diversity (Hernández-Stefanoni et al., 

2023). 

Another variable that helped explain the variability in the values of the diversity 

indices was the number of trees, which is the second variable in relative 
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importance. This relationship is logical, given that diversity indices are a function of 

the relative distribution of individuals among species (Salami et al., 2021). 

On the other hand, many other factors influence species diversity, mainly climate, 

topography, and soil properties (Song et al., 2021). However, the relative 

contribution of each variable may vary from one region to another (Song et al., 

2021). Particularly, in the present study, no significant relationships were obtained 

between certain diversity indices and climate data. However, it was determined that 

rainfall may be a predictor of species richness in the study area, although this 

relationship has been more evident at larger scales (Xu et al., 2019). 

Finally, as mentioned in similar studies, these types of results should be restricted 

to the working area, as they may be modified depending on the species examined, 

the environment, or the overall community members (Kiran and Mudaliar, 2012). 

 

 

Conclusions 

 

 

The relationship of diversity indices with NVDI, climate data, and a number of trees 

varies across space. The independent variables show greater predictive potential in 

the Northern and Northwestern parts of the study area; these results support the 

research hypothesis. NDVI has a high predictive power; therefore, it can function as 

a proxy for factors associated with tree diversity. 

GWR is an effective method for analyzing the relationship between tree diversity 

and associated factors; in addition to being a technique that improves the results, it 

also contributes to the explanation of the spatial distribution of tree diversity. 
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Finally, these results serve as a basis for similar research in the region, and the use 

of statistical models that include the spatial component is recommended for a better 

understanding of diversity patterns and associated factors. 
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