Revista Mexicana de Ciencias Forestales Vol. 15 (83)

Mayo - Junio (2024)

Logotipo, nombre de la empresa

Descripción generada automáticamente

DOI: https://doi.org/10.29298/rmcf.v15i83.1457

Research article

Estructura y diversidad florística en áreas verdes urbanas de la ciudad de Tapachula, Chiapas, México

Structure and floristic diversity of urban green areas in Tapachula city, Chiapas, Mexico

Carlos Mario Almeida-Cerino1, Vincenzo Bertolini1*, Tomás Martínez-Trinidad2

 

Fecha de recepción/Reception date: 8 de diciembre de 2023.

Fecha de aceptación/Acceptance date: 28 de febrero de 2024.

_______________________________

1El Colegio de la Frontera Sur (Ecosur), Unidad Tapachula. México.

2Colegio de Postgraduados (Colpos) Campus Montecillo. México.

 

*Autor para correspondencia; correo-e: vin.bertolini@gmail.com

*Corresponding author; e-mail: vin.bertolini@gmail.com

 

Abstract

Urban vegetation is a vital part of urban infrastructure due to the environmental services it provides and the benefits to the population; therefore, it is important to know its diversity and structure. The objective of this work was to assess the structure and floristic composition of trees, palms and shrubs located in public urban areas of the city of Tapachula, state of Chiapas. Mensuration information was collected from eight public parks; five public green areas, four medians and 38 streets, with a total area of 27.32 ha. Normal diameter (1.30 m base from the ground) and total height were recorded. The density of species per urban green area was calculated. Diversity was evaluated using the Shannon-Weiner and Margalef indexes. Taxonomically, 130 species, 109 genera and 44 families were identified. Of the 130 specific taxa recorded, 65 belong to native species and 65 exotic. The total number of individuals was 1 927 exotic and 550 native. Ficus microcarpa is the predominant exotic with 6.14 Importance Value Index (IVI). Of the native species, Roseodendron donnell-smithii stands out as the most representative (IVI=1.45). The Shannon-Weiner Index calculated for different green areas registered 2.7≤H'≤3.3 and the Margalef Index 5.2≤DMg≤15.2, showing that the streets have a great species diversity.

Key words: Urban trees, urban forestry, exotic species, native species, diversity index, landscaping.

Resumen

La vegetación es una parte vital de la infraestructura urbana por los servicios ambientales y los beneficios que provee a la población, por lo que es importante conocer su diversidad y estructura. El objetivo del presente trabajo fue evaluar la estructura y composición florística de árboles, palmas y arbustos ubicados en áreas urbanas públicas de la ciudad de Tapachula, en el estado de Chiapas. Se recabó información dasométrica de ocho parques públicos, cinco áreas verdes públicas, cuatro camellones o jardineras y 38 calles, con una superficie total de 27.32 ha. Se registró el diámetro normal (1.30 m de la base del suelo) y la altura total. Se calculó la densidad de especies por área verde. La diversidad fue evaluada mediante los índices de Shannon-Weiner y de Margalef. Taxonómicamente, se identificaron 130 especies, 109 géneros y 44 familias. De los taxa registrados, 65 pertenecen a especies nativas (550 individuos) y 65 a exóticas (1 927 individuos). Ficus microcarpa es el taxón exótico preponderante con un Índice de Valor de Importancia (IVI) de 6.14. De las especies nativas, Roseodendron donnell-smithii destaca como el elemento más representativo (IVI=1.45). El Índice de Shannon-Weiner calculado para diferentes áreas verdes registró 2.7≤H’≤3.3 y el Índice de Margalef 5.2≤DMg≤15.2, lo cual evidencia que las calles poseen una gran diversidad de especies.

Palabras clave: Arbolado urbano, dasonomía urbana, especies exóticas, especies nativas, índice de diversidad, paisajismo. 

 

 

Introduction

 

 

Rapid and uncontrolled urbanization causes the loss of biodiversity, soil degradation, high levels of fragmentation of green spaces and low connectivity between the city and the natural environment (Velasco et al., 2014). In this sense, the importance of studying urban trees to have concrete data on what is happening at the present and provide solutions that can mitigate environmental problems at a local scale is indisputable (Martínez-Trinidad et al., 2021). Green areas for public use can conserve and preserve biological variability within the city, being reservoirs of fauna and flora species from each region (Mexia et al., 2018). The trees intercept and store rainwater to recharge the soil aquifers, absorb polluting particles and the canopy functions as a barrier against noise, and at the same time offers shelter for birds, squirrels, bats, insects, among other animals (Guillen-Cruz et al., 2021).

Knowing the diversity and floristic structure contributes to properly managing trees in urban green areas to maximize environmental services (Morales-Gallegos et al., 2023). Inside a city, the tree composition becomes an integral part of it; it positively interacts with the atmosphere and soil, and adapts to the difficult conditions dictated by the urban environment (Liu et al., 2022). Based on the above, the objective of the present study was to evaluate the structure, composition of trees and shrubs, as well as compare the richness and diversity of species between avenues, streets, squares, parks and public medians of the city of Tapachula, state of Chiapas, in order to have a representative estimate of the tree heritage and set a guideline for better future planning.

 

 

Materials and Methods

 

 

Study area

 

 

The city is located within the Soconusco region, Chiapas, and is located between 14°53'28.34" N and 92°16'15.74" W (Martínez-Camilo et al., 2019). Two types of climate prevail: Am (warm humid with intense rains in summer) with an annual precipitation greater than 2 500 mm and annual average temperature of 26 °C, and Aw2 (warm subhumid with rains in summer) with a higher average annual temperature of 22 °C and an annual average precipitation of 500 to 2 500 mm (Murcia and Macías, 2009). The Tapachula municipality covers about 51.74 km2 with an average elevation of 170 masl. Geomorphologically, the city is located between the low mountain range with steep slopes and the coastal plain with hills, which rest on Mesozoic metamorphic rocks (García-Palomo et al., 2006). The sampling areas were located throughout the central part of the city with the aim of recording the oldest specimens (Figure 1). It was also decided to evaluate the south-west axis that coincides with the road to the airport and the exit to the east of the city, until reaching the Bonanza roundabout, which coincides with the end of the city before the highway to Guatemala. Field data were collected during 2018-2020.

 

Source: Prepared by the authors based on an image from https://www.google.com/intl/es-419/earth/.

Figure 1. Location of the sampling points inside the city of Tapachula, Chiapas, Mexico.

 

55 green areas were selected, all with free access to the public, and the typology of urban green spaces was described as: 38 streets, eight public parks, four planters or medians and five public green areas. In addition, the surface area of the types of urban green areas was determined and a database was generated in Microsoft Excel® in which the infrastructure of the urban typology was included (Alanís-Rodríguez et al., 2022, Morales-Gallegos et al., 2023).

 

 

Floristic inventory

 

 

A tree, palms and shrubs census established in the types of urban green areas was carried out. Individuals of interest were georeferenced using a GPS/GNSS navigator for Android® (Dangullaa et al., 2020). All census individuals were measured in terms of total height (h) with a PM-5 Suunto® hypsometer, normal diameter at 1.30 m (d1.30 m) from the ground with a model TP30ME Truper® crosshead 30 m fiberglass measuring tape (Cruz-Salazar et al., 2020; Holguín-Estrada et al., 2021).

The species were identified by common and scientific name, using botanical keys (Macías et al., 2015) and to verify the correct and updated nomenclature, the Tropicos® platform was used (Tropicos, 2023). The taxa that could not be identified in the field were collected for determination in the ECO-TA-H herbarium of El Colegio de la Frontera Sur (Ecosur). Their origin was determined (native or exotic) and the total number of trees, palms and shrubs per urban green area was counted (Alanís-Rodríguez et al., 2022, Morales-Gallegos et al., 2023).

 

 

Structure and diversity

 

 

The abundance for each individual of each species was calculated, based on the number of individuals, its dominance according to its basimetric area and its frequency based on its presence in the sampling sites. The relative values of the structural attributes were combined into the Importance Value Index (IVI) (Holguín-Estrada et al., 2021). Richness and alpha diversity were estimated with the Shannon-Wiener entropy index, which is based on the proportional distribution of the abundance of each species, and the Margalef richness index, which considers the quantification of the number of species present and the Shannon true diversity index (1D) (Moreno et al., 2011); in addition, a Foreign index (Sa) was used that indicates the percentage of species not native to the geographical area based on the native species and species native to the region (Morales-Gallegos et al., 2023) (Table 1). 

 

Table 1. Formulas used to calculate the richness, diversity, foreign species and Importance Value Index in the types of urban green areas within the city of Tapachula, Chiapas, Mexico.

 

The 10-20-30 rule was also used, which assumes that a tree species should not exceed 10 %, a genus 20 % and a family no more than 30 % as an indicator of diversity (Dangulla et al., 2020; Martínez-Trinidad et al., 2021). The calculations were performed in a Microsoft Excel® spreadsheet (Morales-Gallegos et al., 2023).

 

 

Results

 

 

The total area explored was 27.32 ha. The total number of individuals (2 477) grouped into 130 species, 109 genera and 44 families. The most representative families in number of species were Fabaceae with 19 taxa, Arecaceae with 12, Bignoniaceae with 10, Rutaceae with eight, Moraceae with seven and Malvaceae with six. Angiosperms represented 96.92 %, while gymnosperms represented 3.08 %. Due to their origin, of the 130 taxa recorded in the study, 65 were native and 65 exotic. Cedrela odorata L. and Roystonea regia (Kunth) O. F. Cook are declared as species subject to special protection (Pr) in the NOM-059-SEMARNAT-2010 Mexican regulation (Semarnat, 2010) (Table 2). 

 

Table 2. Tree species, palms and shrubs, and average dasometric variables found in 55 green areas of the city of Tapachula, Chiapas, Mexico.

Species

Family

No. Ind.

Origin

Dn

(cm)

At

(m)

Ab

(cm2)

Acacia cornigera (L.) Willd.

Fabaceae

1

Na

11.10

2.53

0.01

Adonidia merrillii (Becc.) Becc.

Arecaceae

65

Ex

22.04

4.64

2.65

Anacardium occidentale L.

Anacardiaceae

6

Ex

48.83

8.08

1.29

Annona macroprophyllata Donn. Sm.

Annonaceae

11

Na

29.45

5.82

0.94

Annona muricata L.

Annonaceae

21

Na

21.90

5.59

0.94

Artocarpus altilis (Parkinson) Fosberg

Moraceae

7

Ex

65.86

11.29

2.58

Artocarpus heterophyllus Lam.

Moraceae

2

Ex

30.00

5.00

0.15

Averrhoa carambola L.

Oxalidaceae

11

Ex

41.91

7.27

1.64

Bauhinia forficata Link

Fabaceae

10

Ex

26.33

4.33

0.80

Beaucarnea recurvata Lem.

Asparagaceae

2

Na

25.00

4.75

0.10

Bismarckia nobilis Hildebrandt & H. Wendl.

Arecaceae

2

Ex

22.01

7.52

0.08

Bonellia macrocarpa (Cav.) B. Ståhl & Källersjö

Primulaceae

3

Na

26.67

4.33

0.18

Bougainvillea glabra Choisy

Nyctaginaceae

5

Ex

14.40

4.80

0.09

Bougainvillea spectabilis Willd.

Nyctaginaceae

5

Ex

35.40

4.40

0.62

Bursera simaruba (L.) Sarg.

Burseraceae

1

Na

20.00

4.00

0.03

Byrsonima crassifolia (L.) Kunth

Malpighiaceae

50

Na

38.29

6.23

7.23

Caesalpinia pulcherrima (L.) Sw.

Fabaceae

4

Na

18.75

4.54

0.11

Calliandra magdalenae (Bertero ex DC.) Benth. var. colombiana (Britton & Rose) Barneby

Fabaceae

5

Na

40.61

5.41

0.65

Calophyllum brasiliense Cambess.

Calophyllaceae

2

Na

45.00

4.00

0.32

Camellia japonica L.

Theaceae

1

Ex

15.00

4.00

0.02

Carica papaya L.

Caricaceae

2

Na

26.50

6.53

0.11

Caryota urens L.

Arecaceae

2

Ex

24.00

8.00

0.09

Cascabela thevetia (L.) Lippold

Apocynaceae

8

Na

26.88

5.69

0.47

Cassia fistula L.

Fabaceae

6

Ex

38.67

5.67

0.77

Casuarina equisetifolia L.

Casuarinaceae

6

Ex

62.67

20.33

1.86

Cecropia obtusifolia Bertol.

Urticaceae

1

Na

15.00

2.00

0.02

Cedrela odorata L.*

Meliaceae

1

Na

50.00

12.00

0.20

Ceiba pentandra (L.) Gaertn.

Malvaceae

7

Na

67.14

14.71

2.59

Chrysobalanus icaco L.

Chrysobalanaceae

3

Na

26.00

4.83

0.20

Chrysophyllum cainito L.

Sapotaceae

1

Na

65.00

15.00

0.33

Cinnamomum verum J. Presl

Lauraceae

1

Ex

60.00

6.00

0.28

Citrus × aurantium L.

Rutaceae

6

Ex

22.08

4.83

0.39

Citrus × limetta Risso

Rutaceae

2

Ex

21.53

5.51

0.09

Citrus × limon (L.) Osbeck

Rutaceae

52

Ex

22.11

4.43

2.36

Citrus × limonia (L.) Osbeck

Rutaceae

1

Ex

40.00

6.00

0.13

Citrus × paradisi Macfad.

Rutaceae

1

Ex

40.00

9.00

0.13

Citrus × sinensis (L.) Osbeck

Rutaceae

15

Ex

27.93

6.37

1.24

Citrus reticulata Blanco

Rutaceae

2

Ex

27.00

4.52

0.12

Cnidoscolus chayamansa McVaugh

Euphorbiaceae

3

Na

17.00

4.00

0.07

Coccoloba escuintlensis Lundell

Polygonaceae

1

Na

60.10

6.00

0.28

Cocos nucifera L.

Arecaceae

22

Ex

36.45

8.50

2.54

Codiaeum variegatum (L.) Rumph. ex A. Juss.

Euphorbiaceae

11

Ex

13.75

3.05

0.20

Coffea arabica L.

Rubiaceae

3

Ex

12.27

2.00

0.05

Cordia alliodora (Ruiz & Pav.) Oken

Cordiaceae

3

Na

55.00

7.00

0.72

Cordia dodecandra DC.

Cordiaceae

4

Na

29.52

6.52

0.28

Crescentia alata Kunth

Bignoniaceae

4

Na

11.51

3.38

0.05

Crescentia cujete L.

Bignoniaceae

11

Na

30.62

4.49

1.23

Cupressus sempervirens L.

Cupressaceae

7

Ex

33.86

5.11

0.80

Delonix regia (Bojer ex Hook.) Raf.

Fabaceae

10

Ex

60.90

11.00

3.11

Diphysa americana (Mill.) M. Sousa

Fabaceae

2

Na

21.00

6.00

0.09

Dracaena fragrans (L.) Ker Gawl.

Asparagaceae

1

Ex

15.00

5.00

0.02

Dypsis lutescens (H. Wendl.) Beentje & J. Dransf.

Arecaceae

155

Ex

22.14

5.41

6.41

Ehretia tinifolia L.

Ehretiaceae

1

Na

36.00

4.51

0.10

Elaeis guineensis Jacq.

Arecaceae

202

Ex

65.01

14.52

67.93

Enterolobium cyclocarpum (Jacq.) Griseb.

Fabaceae

7

Na

64.57

21.14

2.60

Eriobotrya japonica (Thunb.) Lindl.

Rosaceae

1

Ex

60.00

5.00

0.28

Erythrina folkersii Krukoff & Moldenke

Fabaceae

1

Na

40.00

3.00

0.13

Erythrina variegata L.

Fabaceae

1

Ex

24.00

5.00

0.05

Eucalyptus sp.

Myrtaceae

5

Ex

18.80

5.83

0.14

Ficus insipida Willd.

Moraceae

1

Na

75.00

16.00

0.44

Ficus microcarpa L. f

Moraceae

406

Ex

51.93

6.32

97.61

Ficus sp.

Moraceae

4

Na

64.00

13.00

1.33

Ficus benjamina L.

Moraceae

189

Ex

57.74

6.18

52.67

Ficus elastica Roxb. ex Hornem.

Moraceae

2

Ex

16.25

11.50

0.04

Garcinia mangostana L.

Clusiaceae

1

Ex

12.00

5.00

0.01

Gardenia jasminoides J. Ellis

Rubiaceae

2

Ex

21.50

4.00

0.07

Gmelina arborea Roxb. ex Sm.

Lamiaceae

2

Ex

58.00

11.50

0.53

Gossypium hirsutum L.

Malvaceae

1

Na

21.00

2.51

0.03

Guazuma ulmifolia Lam.

Malvaceae

2

Na

48.50

7.51

0.44

Hamelia patens Jacq.

Rubiaceae

1

Na

20.00

3.00

0.03

Handroanthus chrysanthus (Jacq.) S. O. Grose

Bignoniaceae

8

Na

51.63

14.63

1.78

Hibiscus rosa-sinensis L.

Malvaceae

5

Ex

27.60

4.11

0.34

Hymenaea courbaril L.

Fabaceae

1

Na

75.00

14.00

0.44

Inga spuria Humb. & Bonpl. ex Willd.

Fabaceae

1

Na

35.00

5.00

0.10

Inga edulis Mart.

Fabaceae

1

Na

46.00

8.00

0.17

Inga inicuil G. Don

Fabaceae

1

Na

46.00

5.00

0.10

Inga laurina (Sw.) Willd.

Fabaceae

1

Ex

65.00

12.00

0.33

Ixora coccinea L.

Rubiaceae

6

Ex

18.92

3.08

0.24

Jacaranda mimosifolia D. Don

Bignoniaceae

1

Ex

38.00

5.00

0.11

Jatropha curcas L.

Euphorbiaceae

1

Na

30.00

8.00

0.07

Lagerstroemia speciosa (L.) Pers.

Lythraceae

9

Ex

57.89

7.56

2.51

Leucaena leucocephala (Lam.) de Wit

Fabaceae

2

Na

17.00

7.00

0.03

Mangifera indica L.

Anacardiaceae

24

Ex

59.88

11.67

7.28

Manilkara zapota (L.) P. Royen

Sapotaceae

1

Na

30.00

6.00

0.07

Melia azedarach L.

Meliaceae

13

Ex

33.23

6.77

1.29

Morinda citrifolia L.

Rubiaceae

2

Ex

25.54

7.00

0.10

Moringa oleifera Lam.

Moringaceae

5

Ex

29.60

5.42

0.39

Muntingia calabura L. 

Muntingiaceae

20

Na

30.40

4.85

1.96

Murraya paniculata (L.) Jack

Rutaceae

112

Ex

31.84

4.64

10.75

Mussaenda erythrophylla Schumach. & Thonn.

Rubiaceae

3

Ex

22.67

4.33

0.12

Nephelium lappaceum L.

Sapindaceae

6

Ex

26.17

3.17

0.40

Parmentiera aculeata (Kunth) Seem.

Bignoniaceae

65

Na

43.47

6.36

11.38

Persea americana Mill.

Lauraceae

8

Na

49.38

9.69

1.93

Phoenix roebelenii O'Brien

Arecaceae

29

Ex

20.48

3.31

1.13

Phyllanthus acidus (L.) Skeels

Phyllanthaceae

2

Ex

16.52

2.51

0.04

Pinus patula Schltdl. & Cham.

Pinaceae

1

Na

56.00

16.00

0.25

Platycladus orientalis (L.) Franco

Cupressaceae

10

Ex

29.10

4.33

0.70

Plumeria rubra L.

Apocynaceae

4

Na

16.10

3.38

0.09

Polyalthia longifolia (Sonn.) Thwaites

Annonaceae

199

Ex

17.98

7.39

5.38

Pouteria sapota (Jacq.) H. E. Moore & Stearn

Sapotaceae

1

Na

20.00

12.00

0.03

Psidium guajava L.

Myrtaceae

39

Na

27.69

5.49

2.76

Ravenala madagascariensis Sonn.

Strelitziaceae

1

Ex

32.00

4.00

0.08

Roseodendron donnell-smithii (Rose) Miranda

Bignoniaceae

64

Na

67.05

15.72

23.29

Roystonea regia (Kunth) O. F. Cook*

Arecaceae

27

Na

45.70

13.19

4.52

Sabal mexicana Mart.

Arecaceae

8

Na

59.38

8.13

2.36

Schizolobium parahyba (Vell.) S. F. Blake

Fabaceae

3

Na

74.33

14.67

1.31

Senna alata (L.) Roxb.

Fabaceae

1

Na

21.00

3.00

0.03

Simarouba amara Aubl.

Simaroubaceae

2

Na

39.00

5.00

0.24

Spathodea campanulata P. Beauv.

Bignoniaceae

1

Ex

75.00

17.00

0.44

Spondias mombin L.

Anacardiaceae

3

Na

69.33

9.00

1.15

Spondias purpurea L.

Anacardiaceae

1

Na

38.00

7.00

0.11

Sterculia mexicana R. Br.

Malvaceae

2

Na

30.00

11.00

0.16

Swietenia macrophylla King

Meliaceae

1

Na

65.00

8.00

0.33

Syagrus romanzoffiana (Cham.) Glassman

Arecaceae

5

Ex

25.81

6.00

0.27

Syzygium jambos (L.) Alston

Myrtaceae

2

Ex

62.52

8.00

0.64

Tabebuia guayacan (Seem.) Hemsl.

Bignoniaceae

3

Na

58.67

14.67

0.82

Tabebuia rosea (Bertol.) DC.

Bignoniaceae

63

Na

57.32

12.83

17.48

Tabernaemontana divaricata (L.) R. Br. ex Roem. & Schult.

Apocynaceae

3

Ex

18.67

2.03

0.08

Talisia oliviformis (Kunth) Radlk.

Sapindaceae

13

Na

32.92

6.77

1.22

Tamarindus indica L.

Fabaceae

1

Ex

60.00

9.00

0.28

Tecoma stans (L.) Juss. ex Kunth

Bignoniaceae

28

Na

32.13

6.25

2.92

Tectona grandis L. f.

Lamiaceae

4

Ex

32.52

7.75

0.35

Terminalia catappa L.

Combretaceae

233

Ex

36.73

7.48

28.81

Theobroma cacao L.

Malvaceae

1

Na

20.00

5.00

0.03

Thrinax sp.

Arecaceae

5

Na

36.22

7.41

0.66

Thuja occidentalis L.

Cupressaceae

18

Ex

34.05

4.78

2.06

Triplaris melaenodendron (Bertol.) Standl. & Steyerm.

Polygonaceae

1

Na

38.00

4.53

0.11

Vaccinium myrtillus L.

Ericaceae

1

Ex

20.00

5.00

0.03

Washingtonia sp.

Arecaceae

3

Ex

56.00

8.33

0.77

Yucca guatemalensis Baker

Asparagaceae

1

Na

18.00

4.51

0.03

No. Ind. = Number of individuals; Dn = Normal diameter (cm); At = Total height (m); Ab = Basimetric area (cm2); Na = Native; Ex = Exotic. *Specie in NOM-059-SEMARNAT-2010 (Semarnat, 2010) in status subject to special protection. 

 

In relation to the height class, the greatest presence of trees, shrubs and palms was recorded in the 5.04-7.31 m category with 904 individuals, followed by the 2.77-5.04 m category in which 593 individuals and 31 individuals with a height greater than 18.65 m. The distribution of individuals in height classes had an asymmetric distribution (Figure 2). Most urban trees are made up of young specimens and few mature and long-lived individuals.

 

Figure 2. Number of individuals of trees, shrubs and palms according to total height class (m).

 

With regard to the diametric classes, it is observed that a low number of individuals with small diameters and a greater number of specimens with large diameters (>21 cm) prevail; there is heterogeneity in its distribution, which means that it is not strictly normal. In total, 555 individuals smaller than 21 cm in normal diameter and 1 922 individuals larger than 21 cm were counted; however, the highest abundance was recorded in the diameter classes of 13.5-20.0, 59.0-65.5 and 72.0-78.5 cm with 407, 344 and 305 individuals, respectively. The distribution of individuals in diametric classes was asymmetric, probably due to the wide diversity of present species (Figure 3).

 

Figure 3. Number of individuals of trees, shrubs and palms according to the normal diameter class (cm).

 

The most abundant species were: Ficus microcarpa L. f. (16.39 %), Terminalia catappa L. (9.41 %), Elaeis guineensis Jacq. (8.16 %), Polyalthia longifolia (Sonn.) Thwaites (8.03 %), Ficus benjamina L. (7.63 %), Dypsis lutescens (H. Wendl.) Beentje & J. Dransf. (6.26 %) and Murraya paniculata (L.) Jack (4.52 %) (Table 3). Those with the highest Importance Value Index were: Ficus microcarpa (exotic), Elaeis guineensis (exotic), Ficus benjamina (exotic) and Terminalia catappa (exotic) (Table 3).

 

Table 3. Ecological parameters of abundance, dominance, frequency and Importance Value Index of the most frequent tree species, palms and shrubs in the green areas of the city of Tapachula, Chiapas, Mexico.

Species

Abundance

Dominance

Frequency

ImportanceValue

N ha-1

%

m2 ha-1

%

N site-1

%

IVI

Ficus microcarpa L. f.

14.87

16.39

3.58

0.86

0.75

1.18

6.14

Terminalia catappa L.

8.53

9.41

1.06

0.25

1.00

1.57

3.74

Elaeis guineensis Jacq.

7.40

8.16

2.49

0.60

0.75

1.18

3.31

Ficus benjamina L.

6.92

7.63

1.93

0.46

1.00

1.57

3.22

Polyalthia longifolia (Sonn.) Thwaites

7.29

8.03

0.20

0.05

1.00

1.57

3.22

Dypsis lutescens (H. Wendl.) Beentje & J. Dransf.

5.68

6.26

0.23

0.06

1.00

1.57

2.63

Murraya paniculata (L.) Jack

4.10

4.52

0.39

0.09

0.50

0.78

1.80

Roseodendron donnell-smithii (Rose) Miranda*

2.34

2.58

0.85

0.21

1.00

1.57

1.45

Parmentiera aculeata (Kunth) Seem.*

2.38

2.62

0.42

0.10

1.00

1.57

1.43

Tabebuia rosea (Bertol.) DC.*

2.31

2.54

0.64

0.15

1.00

1.57

1.42

Adonidia merrillii (Becc.) Becc.

2.38

2.62

0.10

0.02

1.00

1.57

1.41

Byrsonima crassifolia (L.) Kunth*

1.83

2.02

0.26

0.06

0.75

1.18

1.09

*Native species

 

According to the richness and diversity indexes, the city of Tapachula has a greater richness of species in alignment trees (streets) and in public green areas, while in the flower beds or medians the results were lower (Table 4). 

 

Table 4. Diversity indexes obtained by type of green area in the city of Tapachula, Chiapas, Mexico.

Site

Sampled area (ha)

Species

%

No. Ind.

%

Indexes

Shannon

H'

Margalef

DMg

Foreign

Sa

Flower beds or ridges

0.79

30

23.1

258

10.4

2.7

5.2

66.67

Streets

10.92

113

86.9

1551

62.6

3.3

15.2

50.44

Public parks

3.1

52

40

302

12.2

3.1

8.9

50

Public green areas

12.51

60

46.2

366

14.8

3.1

10.00

48.33

No. Ind. = Number of individuals.  

 

 

Discussion

 

 

The city streets presented a greater diversity of species: this is probably due to the fact that this type of surface shown, along with the green areas, were the largest. However, the diversity of the former had double the records compared to green areas. It is considered that this data reflects the probable renewal of the road's own trees, which are more susceptible to intervention by the city council, because the conditions of the sidewalks cause more stress on the vegetation than larger spaces. 130 species were recorded in the city of Tapachula, a figure much higher than the 38 defined by Alanís-Rodríguez et al. (2022) in the center of Hualahuises, Nuevo León, and at 33 by Molina et al. (2023) in urban forests of six rural areas of said town, northeast of Mexico. It is worth mentioning that the ecological situation of Tapachula offers more favorable conditions for biological diversity than those of Nuevo León, since it is a humid tropical environment.

The Fabaceae family was the most representative with 19 species. Equal numbers of native and exotic species were recorded (65 and 65, respectively). Generally, for other Mexican cities, more exotic than native species have been recorded (Alanís-Rodríguez et al., 2022; Molina et al., 2023; Morales-Gallegos et al., 2023). This pattern can be observed in much of the world and is related to the increase in the production of ornamental trees introduced in nurseries (Alanís-Rodríguez et al., 2022). The high presence of exotic species in the city of Tapachula is related to the increase in their use in the green areas of the cities of southern Mexico in the 80s and 90s, due to their attractiveness and the low availability of species native (Morales-Gallegos et al., 2023).

On the other hand, under the aim of protection and conservation against exotic or native pests and diseases, Santamour (1990) proposed the 10-20-30 rule to promote the diversity of urban forests (10% abundance at the specie level, 20% abundance at the generic level and 30% abundance at the plant family level). In addition, a range of ages should be maintained to rationally plan the removal and replacement of dead specimens and pruning (Flores et al., 2018). In the case of the city of Tapachula, Ficus microcarpa exceeds 10 % presence, Citrus 20 % in terms of the genus, and the Fabaceae family exceeded 30 % in accordance with what was recommended by Santamour (1990).

In a diagnosis of the urban trees of “El Vedado” in Havana, Cuba, 33 tree species were counted, of which Ficus sp., Calophyllum antillanum Britton and Terminalia catappa represent 42 % of the total; 34 % of urban trees showed serious health problems, mainly in the crowns (Castillo and Pastrana, 2015), data similar to those identified in the present study. In 17 urban green spaces in the city of Recife, Pernambuco, Brazil, 49.1 % native species and 50.9 % exotic species were calculated, similar to the proportion in the study of interest (De Souza e Silva et al., 2020). In contrast, Dangullaa et al. (2020) evaluated the composition, diversity, structural characteristics and provenance of trees in two cities in northwestern Nigeria, and concluded the predominance of native species over exotic ones, as well as the highest populations of exotic origin.

In Mexico, the structure, diversity and ecosystem services of trees were evaluated in four parks in the city of Texcoco, State of Mexico (Martínez-Trinidad et al., 2021), and in a similar way to the study described here, Ficus benjamina it was an abundant species with 23 % of the total. For the state of Chiapas, specifically for the city of Tuxtla Gutiérrez, Román-Guillén et al. (2019) reported a total of 7 539 trees, distributed in 38 families, 88 genera and 114 species; 74 % were introduced individuals. Although the urban trees of Tapachula have a lower percentage of exotic species, due to its climatic regime and geographical position, it is important to promote tree diversity to reduce phytosanitary problems, mainly due to the lack of planning in the selection of species and their relationship with ecosystem benefits.

 

 

Conclusions

 

 

Angiosperm tree species are the most numerous in the city. Unlike other cities in Mexico and the world, the percentage of exotic and native species is similar. The alignment trees and in public green areas gather the greatest richness of species. Ficus microcarpa is a species that does not comply with the 10-20-30 rule, so its presence should be reduced, while the Citrus genus is also overrepresented. This study is the first approach and historical record published about the trees of the city of Tapachula, and provides information for better management of the trees in the selection and replacement of tree species.

 

Acknowledgements

 

The authors thank the people who participated in the field activities as practitioners.

 

Conflict of interests

 

The authors declare no conflict of interest.

 

Contribution by author

 

Carlos Mario Almeida-Cerino: field work, preparation of the manuscript, information collection and data analysis; Vincenzo Bertolini: preparation and review of data and manuscript; Tomás Martínez-Trinidad: preparation and review of the manuscript.

 

 

References

Alanís-Rodríguez, E., A. Mora-Olivo, V. M. Molina-Guerra, H. Gárate-Escamilla y J. Á. Sigala R. 2022. Caracterización del arbolado urbano del centro de Hualahuises, Nuevo León. Revista Mexicana de Ciencias Forestales 13(73):39-49. Doi: 10.29298/rmcf.v13i73.1271.

Castillo R., L. y J. C. Pastrana F. 2015. Diagnóstico del arbolado viario de El Vedado: composición, distribución y conflictos con el espacio construido. Arquitectura y Urbanismo 36(2):93-118. http://www.scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1815-58982015000200007. (9 de diciembre de 2023).

Cruz-Salazar, B., L. Ruiz-Montoya, M. T. Pérez-Gómez, M. García-Bautista and N. Ramírez-Marcial. 2020. Diversity and floristic enrichment with montane cloud forest species, in an urban forest in Chiapas, Mexico. Madera y Bosques 26(3):1-13. Doi: 10.21829/myb.2020.2632100.

Dangulla, M., L. A. Manaf, M. F. Ramli and M. R. Yacob. 2020. Urban tree composition, diversity and structural characteristics in North-western Nigeria. Urban Forestry & Urban Greening 48:126512. Doi: 10.1016/j.ufug.2019.126512.

De Souza e Silva, J. L., M. T. Pontes de O., W. Oliveira, L. A. Borges, O. Cruz-Neto and A. V. Lopes. 2020. High richness of exotic trees in tropical urban green spaces: Reproductive systems, fruiting and associated risks to native species. Urban Forestry & Urban Greening 50:126659. Doi: 10.1016/j.ufug.2020.126659.

Flores, A., M. V. Velasco-García, L. Muñoz-Gutiérrez, T. Martínez-Trinidad, M. Gómez-Cárdenas y C. Román-Castillo. 2018. Especies arbóreas para conservar la biodiversidad en zonas urbanas. Mitigación del Daño Ambiental Agroalimentario y Forestal de México 4(5):136-151. https://www.researchgate.net/publication/329859297_TREE_SPECIES_FOR_BIODIVERSITY_CONSERVATION_IN_URBAN_ZONES. (9 de diciembre de 2023).

García-Palomo, A., J. L. Macías, J. L. Arce, J. C. Mora, … and P. Layer. 2006. Geological evolution of the Tacaná volcanic complex, Mexico-Guatemala. In: Rose, W. I., G. J. S. Bluth, M. J. Carr, J. W. Ewert, L. C. Patino and J. W. Vallance (Eds.). Volcanic hazards in Central America. The Geologycal Society of America. Boulder, CO, United States of America. pp. 39-57.

Guillen-Cruz, G., A. L. Rodríguez-Sánchez, F. Fernández-Luqueño and D. Flores-Rentería. 2021. Influence of vegetation type on the ecosystem services provided by urban green areas in an arid zone of northern Mexico. Urban Forestry & Urban Greening 62:1-8. Doi: 10.1016/j.ufug.2021.127135.

Holguín-Estrada, V. A., E. Alanís-Rodríguez, O. Aguirre-Calderón, J. I. Yerena-Yamallel y M. Á. Pequeño-Ledezma. 2021. Estructura y composición florística de un bosque de galería en un gradiente altitudinal en el noroeste de México. Madera y Bosques 27(2):1-16. Doi: 10.21829/myb.2021.2722123.

Liu, K., X. Li, S. Wang and X. Gao. 2022. Assessing the effects of urban green landscape on urban thermal environment dynamic in a semiarid city by integrated use of airborne data, satellite imagery and land surface model. International Journal of Applied Earth Observation and Geoinformation 107:102674. Doi: 10.1016/j.jag.2021.102674.

Imagen de cubiertaMacías S., J. E., S. Ochoa G., L. F. Zamora C., M. Martínez I. y W. Peters G. 2015. Guía de campo para la identificación de árboles de la vertiente Pacífico de Chiapas. El Colegio de la Frontera Sur (Ecosur). San Cristóbal de las Casas, Chis., México. 226 p.

Martínez-Camilo, R., N. Martínez-Meléndez, M. Martínez-Meléndez, M. Á. Pérez-Ferrera and D. A. Jiménez-López. 2019. Why continue with floristic checklists in Mexico? The case of the Tacaná-Boquerón Priority Terrestrial Region, in the Mexican State of Chiapas. Botanical Sciences 97(4):741-753. Doi:10.17129/botsci.2174.

Martínez-Trinidad, T., P. Hernández L., S. F. López-López and L. Mohedano C. 2021. Diversity, structure and ecosystem services of trees in four parks in Texcoco using i-Tree Eco. Revista Mexicana de Ciencias Forestales 12(67):202-223. Doi: 10.29298/rmcf.v12i67.880.

Mexia, T., J. Vieira, A. Príncipe, A. Anjos, … and P. Pinho. 2018. Ecosystem services: Urban parks under a magnifying glass. Environmental Research 160:469-478. Doi: 10.1016/j.envres.2017.10.023.

Molina G., V. M., E. Alanís R., A. Mora O., E. A. Rubio C. y A. T. González C. 2023. Diversidad y estructura de especies arbóreas en localidades rurales de Hualahuises, México. Revista Mexicana de Ciencias Forestales 14(79):344-354. Doi: 10.29298/rmcf.v14i79.1343.

Morales-Gallegos, L. M., T. Martínez-Trinidad, P. Hernández-De la Rosa, A. Gómez-Guerrero, D. Alvarado-Rosales y L. de L. Saavedra-Romero. 2023. Diversidad, estructura y salud del arbolado en áreas verdes de la ciudad de Texcoco, México. Bosque 44(2):401-414. Doi: 10.4067/S0717-92002023000200401.

Moreno, C. E., F. Barragán, E. Pineda y N. P. Pavón. 2011. Reanálisis de la diversidad alfa: alternativas para interpretar y comparar información sobre comunidades ecológicas. Revista Mexicana de Biodiversidad 82(4):1249-1261. Doi: 10.22201/ib.20078706e.2011.4.745.

Murcia, H. F. y J. L. Macías. 2009. Registro geológico de inundaciones recurrentes e inundación del 4 de octubre de 2005 en la ciudad de Tapachula, Chiapas, México. Revista Mexicana de Ciencias Geológicas 26(1):1-17. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1026-87742009000100002. (9 de diciembre de 2023).

Román-Guillén, L. M., C. Orantes-García, C. U. del Carpio-Penagos, M. S. Sánchez-Cortés, M. L. Ballinas-Aquino y Ó. Farrera S. 2019. Diagnóstico del arbolado de alineación de la ciudad de Tuxtla Gutiérrez, Chiapas. Madera y Bosques 25(1):1-9. Doi: 10.21829/myb.2019.2511559.

Santamour, F. S. 1990. Trees for urban planting: diversity, uniformity, and common sense. In: Metropolitan Tree Improvement Alliance (Metria) (Edit.). Metria 7: Proceedings of the seventh conference of the Metropolitan Tree Improvement Alliance. Morton Arboretum. Lisle, IL, United States of America. pp. 57-76. https://www.semanticscholar.org/paper/TREES-FOR-URBAN-PLANTING-%3A-DIVERSITY-UNIFORMITY-%2C-Santamour/26a24c5361ce6d6e618a9fa307c4a34a3169e309?p2df. (9 de diciembre de 2023).

Secretaría de Medio Ambiente y Recursos Naturales (Semarnat). 2010. NORMA Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario Oficial de la Federación, 30 de diciembre de 2010. Venustiano Carranza, D. F., México. 78 p. https://www.gob.mx/profepa/documentos/norma-oficial-mexicana-nom-059-semarnat-2010. (9 de diciembre de 2023).

Tropicos. 2023. Tropicos (v3.4.2). Missouri Botanical Garden. https://www.tropicos.org/home. (9 de diciembre de 2023).

Velasco M., A., E. Durán M., R. Rivera y D. B. Bray. 2014. Cambios en la cobertura arbolada de comunidades indígenas con y sin iniciativas de conservación, en Oaxaca, México. Investigaciones Geográficas, Boletín del Instituto de Geografía 83:55-73. Doi: 10.14350/rig.34975.

 

 

        

Todos los textos publicados por la Revista Mexicana de Ciencias Forestales sin excepción– se distribuyen amparados bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.